BePCon: A Photoplethysmography-Based Quality-Aware Continuous Beat-to-Beat Blood Pressure Measurement Technique Using Deep Learning

光容积图 节拍(声学) 血压 计算机科学 人工智能 医疗器械 自编码 语音识别 深度学习 模式识别(心理学) 医学 心脏病学 内科学 计算机视觉 滤波器(信号处理) 物理 声学
作者
Monalisa Singha Roy,Rajarshi Gupta,Kaushik Das Sharma
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:7
标识
DOI:10.1109/tim.2022.3212750
摘要

Research on noninvasive blood pressure (NIBP) measurement using electrocardiogram (ECG)/ photoplethysmogram (PPG) and their combinations has been most popular in ambulatory health monitoring. The real challenge is motion artifact (MA) corruption in the PPG, which makes the blood pressure (BP) measurement unreliable. This article presents BePCon, a deep learning-based model for beat-to-beat (BtB) BP measurement using a temporal convolutional network (TCN). At first, the signal quality assessment (SQA) of PPG is done by a self-organizing map (SOM). Next, the time-domain, statistical, wavelet, and stacked autoencoder features from current and previous good quality PPG cycles are extracted. A recursive feature elimination (RFE) selects optimum set of 20 features from each cycle before being fed to the TCN to predict the systolic BP (SBP) and diastolic BP (DBP) of current beat. While evaluated over 150 data records from PhysioNet MIMIC-II/III waveform database, BePCon achieves standard deviation (SD) and mean absolute error (MAE) of 3.24 and 2.38 mmHg, respectively, for the SBP and 1.73 and 1.23 mmHg, respectively, for the DBP. An improvement of accuracy by a factor of 19.56% for SBP and 24.61% for DBP is obtained over without SQA. BePCon also complies with Association for Advancements of Medical Instrumentation (AAMI) and British Hypertension Society (BHS) Grade A standard and improvement over published works on BtB BP measurement using MIMIC-II/III waveform database. A standalone implementation with a single core 1-GHz ARM v6 controller supported by 512-MB RAM shows low latency (~2.5 s/beat) and low memory requirement (~32.22 kB/beat). This establishes that BePCon has the potential for real-time ambulatory BtB BP measurement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张二娃完成签到,获得积分20
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
jyy应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
YPP完成签到,获得积分10
4秒前
王汉韬完成签到,获得积分20
5秒前
奥一奥完成签到,获得积分10
6秒前
欣喜沛芹发布了新的文献求助10
6秒前
纾缓发布了新的文献求助10
6秒前
WW完成签到,获得积分10
6秒前
zlttt完成签到,获得积分20
7秒前
852应助momo采纳,获得10
8秒前
此间少年发布了新的文献求助10
8秒前
王汉韬发布了新的文献求助10
8秒前
哈哈完成签到 ,获得积分10
9秒前
英俊的铭应助xn201120采纳,获得10
9秒前
闾丘惜萱完成签到,获得积分10
9秒前
baonali发布了新的文献求助10
11秒前
yyyhhh完成签到,获得积分10
13秒前
ZH完成签到 ,获得积分10
17秒前
17秒前
17秒前
ll完成签到,获得积分10
18秒前
纾缓完成签到,获得积分10
20秒前
潘善若发布了新的文献求助10
20秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136