An Efficient Algorithm-Hardware Co-Design for Radar-Based Fall Detection With Multi-Branch Convolutions

计算机科学 硬件加速 算法 人工神经网络 现场可编程门阵列 计算机硬件 雷达 人工智能 电信
作者
Zixuan Ou,Bing Yu,Wenbin Ye
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:70 (4): 1613-1624 被引量:9
标识
DOI:10.1109/tcsi.2022.3232918
摘要

In this paper, we propose an efficient algorithm-hardware co-design framework to realize radar-based fall detection with limited resources. We first design a compact neural network model named MB-Net with multi-branch convolutions for feature extraction of radar time series data combined with multi-scale wavelet transform. After that, an FPGA-based neural network (NN) accelerator tailored for the proposed network is designed. The proposed NN accelerator replaces the general multipliers with non-exact multipliers to reduce the hardware cost. For the multi-branch convolution layer, a novel layer computing sequence is introduced to improve the efficiency of the processing element (PE) array and reduce the memory footprint. In addition, the average pooling operation in the proposed network is folded into the quantization factors to reduce hardware cost. The experimental findings show that the MB-Net can maintain competitive performance in comparison to state-of-the-art methods while the hardware cost is significantly lower. The proposed network model is implemented in Zynq ZC702 board using only 3615 LUTs, 1843 FFs, 11.5 BRAMs, and 8 DSPs with 0.234 W power consumption. Through algorithm and hardware co-optimization, the fall detection accelerator can achieve 95% PE efficiency and takes 0.346 ms latency for a radar sample interference with only 80.96 uJ energy consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wyan发布了新的文献求助80
1秒前
成就映秋发布了新的文献求助30
1秒前
科研通AI2S应助坤坤采纳,获得10
1秒前
整齐芷文完成签到,获得积分10
2秒前
科研通AI5应助小马哥36采纳,获得10
2秒前
灵巧荆发布了新的文献求助10
3秒前
小二郎应助侦察兵采纳,获得10
3秒前
爆米花完成签到 ,获得积分10
3秒前
今后应助Evan123采纳,获得10
3秒前
凤凰之玉完成签到 ,获得积分10
4秒前
shi hui应助冬瓜炖排骨采纳,获得10
4秒前
5秒前
dyh6802发布了新的文献求助10
5秒前
冷静雅青发布了新的文献求助10
5秒前
CipherSage应助猪猪hero采纳,获得10
6秒前
领导范儿应助不凡采纳,获得30
6秒前
顾矜应助坚定的亦绿采纳,获得10
7秒前
7秒前
yu完成签到,获得积分10
7秒前
Chris完成签到,获得积分10
8秒前
cookie发布了新的文献求助10
9秒前
胖仔完成签到,获得积分10
9秒前
Chan0501完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
duxinyue发布了新的文献求助10
11秒前
汉堡转转转完成签到,获得积分10
12秒前
喵酱发布了新的文献求助30
12秒前
6666完成签到,获得积分10
12秒前
研友_VZG7GZ应助灵巧荆采纳,获得10
13秒前
wjn完成签到,获得积分10
13秒前
14秒前
竹子完成签到,获得积分10
14秒前
MAKEYF完成签到 ,获得积分10
14秒前
15秒前
Owen应助猪猪hero采纳,获得10
15秒前
16秒前
CipherSage应助海棠yiyi采纳,获得50
17秒前
Khr1stINK发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794