Emotional labor, occupational identity and work engagement in Portuguese police officers

情感劳动 工作投入 心理学 葡萄牙语 社会心理学 身份(音乐) 比例(比率) 背景(考古学) 情绪衰竭 工作(物理) 倦怠 临床心理学 机械工程 语言学 哲学 物理 声学 工程类 古生物学 量子力学 生物
作者
Soraia Oliveira,Carla Carvalho,Ana Pinto,Rui Coelho de Moura,Paulo Santos‐Costa
出处
期刊:International Journal of Human Resource Management [Routledge]
卷期号:34 (4): 768-804 被引量:12
标识
DOI:10.1080/09585192.2022.2162345
摘要

AbstractAbstractBased on emotional labor theory, we aim to study the relationships between the dimensions of emotional labor (requirements and strategies), work engagement, and occupational identity in Portuguese police officers. Therefore, we intend to explore the possible effects of emotional labor both on work engagement and occupational identity, as well as ways of preventing and/or mitigating the impact of these relationships. We identified a gap in the studies on this subject in Portugal, particularly in the context of police professionals. Thus, a sample of 924 Portuguese police officers of the Public Security Police (PSP) was asked to answer a set of questionnaires: the Emotional Labour Scale, the Emotion Work Requirements Scale, the Utrecht Work Engagement Scale, and the Social Identity Scale. The data obtained was analyzed using correlation and multiple linear regression. Overall, the results revealed relationships between the emotional demands (i.e., suppression of negative emotions and expression of positive emotions) and strategies (i.e., deep and surface acting) of emotional labor and work engagement as well as occupational identity. We discuss these results and propose directions for future research, given the richness of the subject.Keywords: Emotional laborwork engagementoccupational identitypolice officersPSPintervention/prevention Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementThe data that support the findings of this study are available from the corresponding author, upon reasonable request.Additional informationFundingThis work has been funded by national funds through Fundação para a Ciência e a Tecnologia (FCT), I.P., Project UIDB/05037/2020.Notes1 “Factor analysis partitions the variance of each indicator (derived from the sample correlation/ covariance matrix) into two parts: (1) Common variance or the variance accounted for by the factor, which is estimated based on variance shared with other indicators in the analysis; and (2) unique variance, which is a combination of reliable variance that is specific to the indicator (i.e., systematic factors that influence only one indicator) and random error variance (i.e., measurement error or unreliability in the indicator)” (Brown, 2015 Brown, T. A. (2015). Confirmatory factor analysis for applied research [internet] (2nd ed.). The Guilford Press. www.guilford.com/MSS [Google Scholar], p. 11). It can be said that if the factor loading is .75, the observed variable explains the latent variable variance of (.75^2 = .56) 56%. It is a good measure. If the factor loading is .40, it explains a 16% variance. As a cut point, .33-factor loading can be given, because explains 10% variance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
周志轩66发布了新的文献求助10
1秒前
Mycee完成签到 ,获得积分10
2秒前
山水有佳发布了新的文献求助10
3秒前
niu应助SSSstriker采纳,获得10
4秒前
5秒前
5秒前
5秒前
9秒前
李爱国应助李富贵采纳,获得10
9秒前
搜集达人应助chentle采纳,获得10
10秒前
怡然白竹发布了新的文献求助10
10秒前
Spark完成签到,获得积分10
11秒前
12秒前
北辰发布了新的文献求助10
13秒前
wuqi完成签到,获得积分10
13秒前
天天快乐应助山水有佳采纳,获得10
13秒前
13秒前
Link发布了新的文献求助10
14秒前
Ryan123发布了新的文献求助10
16秒前
岁月如歌发布了新的文献求助10
19秒前
LMY完成签到 ,获得积分10
19秒前
20秒前
苏颜玉完成签到,获得积分10
20秒前
lin完成签到,获得积分10
21秒前
沉静烧仙草完成签到,获得积分20
21秒前
21秒前
Clover完成签到,获得积分10
22秒前
pwang_ecust完成签到,获得积分10
22秒前
24秒前
pluto应助zy采纳,获得10
25秒前
Skywalker完成签到,获得积分10
25秒前
25秒前
pwang_ecust发布了新的文献求助200
25秒前
Ryan123完成签到,获得积分10
26秒前
科研通AI5应助hihi采纳,获得10
27秒前
科研通AI5应助lqz07采纳,获得30
27秒前
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735888
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016230
捐赠科研通 2996269
什么是DOI,文献DOI怎么找? 1644011
邀请新用户注册赠送积分活动 781681
科研通“疑难数据库(出版商)”最低求助积分说明 749425