SDA-UNet: a hepatic vein segmentation network based on the spatial distribution and density awareness of blood vessels

分割 静脉 计算机科学 肝静脉 人工智能 放射科 医学 模式识别(心理学) 内科学
作者
Guoyu Tong,Huiyan Jiang,Yudong Yao
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (3): 035009-035009 被引量:4
标识
DOI:10.1088/1361-6560/acb199
摘要

Objective.Hepatic vein segmentation is a fundamental task for liver diagnosis and surgical navigation planning. Unlike other organs, the liver is the only organ with two sets of venous systems. Meanwhile, the segmentation target distribution in the hepatic vein scene is extremely unbalanced. The hepatic veins occupy a small area in abdominal CT slices. The morphology of each person's hepatic vein is different, which also makes segmentation difficult. The purpose of this study is to develop an automated hepatic vein segmentation model that guides clinical diagnosis.Approach.We introduce the 3D spatial distribution and density awareness (SDA) of hepatic veins and propose an automatic segmentation network based on 3D U-Net which includes a multi-axial squeeze and excitation module (MASE) and a distribution correction module (DCM). The MASE restrict the activation area to the area with hepatic veins. The DCM improves the awareness of the sparse spatial distribution of the hepatic veins. To obtain global axial information and spatial information at the same time, we study the effect of different training strategies on hepatic vein segmentation. Our method was evaluated by a public dataset and a private dataset. The Dice coefficient achieves 71.37% and 69.58%, improving 3.60% and 3.30% compared to the other SOTA models, respectively. Furthermore, metrics based on distance and volume also show the superiority of our method.Significance.The proposed method greatly reduced false positive areas and improved the segmentation performance of the hepatic vein in CT images. It will assist doctors in making accurate diagnoses and surgical navigation planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
排骨年糕完成签到 ,获得积分10
2秒前
2010完成签到,获得积分10
3秒前
baomingqiu完成签到 ,获得积分10
4秒前
liuq发布了新的文献求助10
7秒前
雨竹完成签到 ,获得积分10
9秒前
陈炳蓉完成签到,获得积分10
9秒前
无辜的黄豆完成签到 ,获得积分10
10秒前
11秒前
伴征阳完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
星城浮轩完成签到 ,获得积分10
19秒前
20秒前
20秒前
20秒前
20秒前
21秒前
21秒前
21秒前
21秒前
英姑应助科研通管家采纳,获得10
21秒前
英姑应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
21秒前
22秒前
22秒前
xiaoyu完成签到,获得积分10
24秒前
maclogos发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
28秒前
xiezizai完成签到,获得积分10
30秒前
Tom完成签到,获得积分10
34秒前
39秒前
WYN完成签到,获得积分10
42秒前
科研通AI6.1应助迷人灵采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5796220
求助须知:如何正确求助?哪些是违规求助? 5774026
关于积分的说明 15491484
捐赠科研通 4923229
什么是DOI,文献DOI怎么找? 2650266
邀请新用户注册赠送积分活动 1597504
关于科研通互助平台的介绍 1552087