全息术
计算机科学
稳健性(进化)
零阶
预处理器
数字全息术
生成对抗网络
人工智能
深度学习
过程(计算)
图像质量
光学
计算机视觉
图像(数学)
一级
数学
物理
操作系统
化学
基因
生物化学
应用数学
作者
Huaying Wang,Kunge Li,Xianan Jiang,Jieyu Wang,Xiaolei Zhang,Xu Liu
标识
DOI:10.1016/j.optcom.2023.129264
摘要
Zero-order image is the main source of noise in the hologram acquisition process. In this paper, a preprocessing method based on deep learning are proposed. Generative adversarial network is applied to suppress zero-order image of off-axis digital holograms. To simplify data preparation process, we propose a digital hologram corresponding database generation method. The simulated data is used to replace the experimental data in the training network. After testing, the experimental data can be processed into a hologram without zero-order image successfully. And the different types of images are reconstructed with high quality. This method shows high efficiency and excellent robustness.
科研通智能强力驱动
Strongly Powered by AbleSci AI