A machine learning model for disease risk prediction by integrating genetic and non-genetic factors

孟德尔随机化 生命银行 计算机科学 机器学习 疾病 人口 全基因组关联研究 遗传关联 预测建模 人工智能 单核苷酸多态性 生物信息学 医学 遗传变异 基因型 生物 遗传学 内科学 环境卫生 基因
作者
Yu Xu,Chonghao Wang,Zeming Li,Yunpeng Cai,Ouzhou Young,Aiping Lyu,Lu Zhang
标识
DOI:10.1109/bibm55620.2022.9994925
摘要

Polygenic risk score (PRS) has been widely used to identify the high-risk individuals from the general population, which would be helpful for disease prevention and early treatment. Many methods have been developed to calculate PRS by weighting and aggregating the phenotype-associated risk alleles from genome-wide association studies. However, only considering genetic effects may not be sufficient for risk prediction because the disease risk is not only related to genetic factors but also non-genetic factors, e.g., diet, physical exercise et al. But it is still a challenge to integrate these genetic and non-genetic factors into a unified machine learning framework for disease risk prediction. In this paper, we proposed PRSIMD (PRS Integrating Multi-source Data), a machine learning model that applies posterior regularization to integrate genetic and non-genetic factors to improve disease risk prediction. Also, we applied Mendelian Randomization analysis to identify the causal non-genetic risk factors for the selected diseases. We applied PRSIMD to predict type 2 diabetes and coronary artery disease from UK Biobank and observed that PRSIMD was significantly better than the existing methods to calculate PRS. In addition, we observed that PRSIMD achieved the better predictive power than the composite risk score. The codes of PRSIMD are available at: https://github.con ericcombiolab/PRSIMD

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小蘑菇应助小星采纳,获得10
刚刚
刚刚
肥肥完成签到,获得积分10
刚刚
无限亦寒完成签到 ,获得积分10
刚刚
1秒前
2秒前
2秒前
不倦应助haoyooo采纳,获得10
2秒前
2秒前
思源应助tutu采纳,获得10
3秒前
苗条怀亦发布了新的文献求助10
3秒前
dew应助baomingqiu采纳,获得10
3秒前
南北3199完成签到,获得积分10
3秒前
Min发布了新的文献求助10
4秒前
润xue完成签到,获得积分10
4秒前
龙大王完成签到 ,获得积分10
4秒前
辛勤月饼发布了新的文献求助20
5秒前
5秒前
5秒前
6秒前
打工人发布了新的文献求助10
6秒前
小王完成签到,获得积分10
6秒前
天一发布了新的文献求助10
6秒前
刘钊扬完成签到,获得积分10
6秒前
6秒前
6秒前
JamesPei应助独特的翠芙采纳,获得10
6秒前
6秒前
acorn发布了新的文献求助10
7秒前
wythu16完成签到,获得积分10
7秒前
7秒前
7秒前
周_发布了新的文献求助10
7秒前
derozan完成签到,获得积分10
7秒前
山菡发布了新的文献求助30
8秒前
非泥完成签到,获得积分10
8秒前
文乾乾发布了新的文献求助10
8秒前
在水一方应助任性绮晴采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665433
求助须知:如何正确求助?哪些是违规求助? 4876596
关于积分的说明 15113729
捐赠科研通 4824584
什么是DOI,文献DOI怎么找? 2582801
邀请新用户注册赠送积分活动 1536780
关于科研通互助平台的介绍 1495335