A machine learning model for disease risk prediction by integrating genetic and non-genetic factors

孟德尔随机化 生命银行 计算机科学 机器学习 疾病 人口 全基因组关联研究 遗传关联 预测建模 人工智能 单核苷酸多态性 生物信息学 医学 遗传变异 基因型 生物 遗传学 内科学 环境卫生 基因
作者
Yu Xu,Chonghao Wang,Zeming Li,Yunpeng Cai,Ouzhou Young,Aiping Lyu,Lu Zhang
标识
DOI:10.1109/bibm55620.2022.9994925
摘要

Polygenic risk score (PRS) has been widely used to identify the high-risk individuals from the general population, which would be helpful for disease prevention and early treatment. Many methods have been developed to calculate PRS by weighting and aggregating the phenotype-associated risk alleles from genome-wide association studies. However, only considering genetic effects may not be sufficient for risk prediction because the disease risk is not only related to genetic factors but also non-genetic factors, e.g., diet, physical exercise et al. But it is still a challenge to integrate these genetic and non-genetic factors into a unified machine learning framework for disease risk prediction. In this paper, we proposed PRSIMD (PRS Integrating Multi-source Data), a machine learning model that applies posterior regularization to integrate genetic and non-genetic factors to improve disease risk prediction. Also, we applied Mendelian Randomization analysis to identify the causal non-genetic risk factors for the selected diseases. We applied PRSIMD to predict type 2 diabetes and coronary artery disease from UK Biobank and observed that PRSIMD was significantly better than the existing methods to calculate PRS. In addition, we observed that PRSIMD achieved the better predictive power than the composite risk score. The codes of PRSIMD are available at: https://github.con ericcombiolab/PRSIMD

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋映之完成签到,获得积分10
1秒前
2秒前
杨仲文完成签到,获得积分10
2秒前
3秒前
helen李完成签到 ,获得积分10
4秒前
啊棕完成签到,获得积分10
4秒前
科研通AI6.1应助yin景景采纳,获得10
4秒前
4秒前
我是老大应助CarryLJR采纳,获得10
5秒前
勤奋映之发布了新的文献求助10
5秒前
6秒前
KCC完成签到,获得积分10
7秒前
7秒前
wxy发布了新的文献求助10
7秒前
乐乐应助ddd采纳,获得20
8秒前
上官小怡发布了新的文献求助10
8秒前
9秒前
邓佳鑫Alan应助JUGG采纳,获得10
9秒前
于冰清发布了新的文献求助10
10秒前
曾俊宇完成签到 ,获得积分10
10秒前
打打应助听风轻语采纳,获得10
10秒前
郭莹莹发布了新的文献求助10
11秒前
蓝冰完成签到,获得积分10
12秒前
彪壮的幻丝完成签到 ,获得积分0
12秒前
sxb10101应助sta采纳,获得10
12秒前
12秒前
12秒前
彭于晏应助wwlllzzttt采纳,获得10
13秒前
Cheryy发布了新的文献求助10
13秒前
16秒前
攀登完成签到,获得积分10
18秒前
张开心发布了新的文献求助10
18秒前
19秒前
何时到达发布了新的文献求助10
19秒前
19秒前
酷波er应助L123采纳,获得10
21秒前
23秒前
王王王王发布了新的文献求助10
25秒前
8R60d8应助小笛ing采纳,获得20
25秒前
orixero应助仙草丸子采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5793517
求助须知:如何正确求助?哪些是违规求助? 5749977
关于积分的说明 15486006
捐赠科研通 4920400
什么是DOI,文献DOI怎么找? 2648925
邀请新用户注册赠送积分活动 1596303
关于科研通互助平台的介绍 1550831