Target-aware Dual Adversarial Learning and a Multi-scenario Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection

水准点(测量) 计算机科学 人工智能 目标检测 模态(人机交互) 保险丝(电气) 判别式 机器学习 深度学习 编码(集合论) 图像融合 计算机视觉 模式识别(心理学) 图像(数学) 电气工程 工程类 大地测量学 集合(抽象数据类型) 程序设计语言 地理
作者
Jinyuan Liu,Xin Fan,Zhanbo Huang,Guanyao Wu,Risheng Liu,Wei Zhong,Zhongxuan Luo
标识
DOI:10.1109/cvpr52688.2022.00571
摘要

This study addresses the issue of fusing infrared and visible images that appear differently for object detection. Aiming at generating an image of high visual quality, previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks. These approaches neglect that modality differences implying the complementary information are extremely important for both fusion and subsequent detection task. This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network. The fusion network with one generator and dual discriminators seeks commons while learning from differences, which preserves structural information of targets from the infrared and textural details from the visible. Furthermore, we build a synchronized imaging system with calibrated infrared and optical sensors, and collect currently the most comprehensive benchmark covering a wide range of scenarios. Extensive experiments on several public datasets and our benchmark demonstrate that our method outputs not only visually appealing fusion but also higher detection mAP than the state-of-the-art approaches. The source code and benchmark are available at https://github.com/dlut-dimt/TarDAL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gg完成签到,获得积分10
1秒前
BJJ发布了新的文献求助10
2秒前
36038138完成签到 ,获得积分10
2秒前
wanci应助碇真嗣采纳,获得10
2秒前
2秒前
吃饱饱完成签到,获得积分10
3秒前
gg发布了新的文献求助10
4秒前
lumingrui发布了新的文献求助10
4秒前
Krstal完成签到 ,获得积分10
4秒前
4秒前
桂花乌龙完成签到,获得积分10
4秒前
做实验太菜完成签到,获得积分10
5秒前
SciGPT应助BaBa采纳,获得10
6秒前
7秒前
Gtingting关注了科研通微信公众号
8秒前
llll完成签到,获得积分10
8秒前
涨涨涨发布了新的文献求助10
9秒前
Galaxy完成签到,获得积分10
9秒前
英吉利25发布了新的文献求助10
11秒前
11秒前
13秒前
科研通AI2S应助凶狠的便当采纳,获得10
14秒前
华仔应助高工采纳,获得10
15秒前
16秒前
深情安青应助诸缘郡采纳,获得10
16秒前
16秒前
wyblobin完成签到,获得积分10
17秒前
努力学习完成签到,获得积分10
17秒前
BaBa发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
Wuc发布了新的文献求助10
19秒前
还没想好完成签到,获得积分10
21秒前
DaLu完成签到,获得积分10
23秒前
23秒前
24秒前
24秒前
lenon完成签到,获得积分10
24秒前
Gtingting发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966458
求助须知:如何正确求助?哪些是违规求助? 3511940
关于积分的说明 11161056
捐赠科研通 3246726
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403