Self-supervised learning-based Multi-Scale feature Fusion Network for survival analysis from whole slide images

计算机科学 人工智能 特征提取 模式识别(心理学) 卷积神经网络 特征(语言学) 特征学习 随机森林 熵(时间箭头) 数据挖掘 机器学习 语言学 量子力学 物理 哲学
作者
L. K. Li,Yong Liang,Mingwen Shao,Shanghui Lu,Shuilin Liao,Dong Ouyang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:153: 106482-106482 被引量:13
标识
DOI:10.1016/j.compbiomed.2022.106482
摘要

Understanding prognosis and mortality is critical for evaluating the treatment plan of patients. Advances in digital pathology and deep learning techniques have made it practical to perform survival analysis in whole slide images (WSIs). Current methods are usually based on a multi-stage framework which includes patch sampling, feature extraction and prediction. However, the random patch sampling strategy is highly unstable and prone to sampling non-ROI. Feature extraction typically relies on hand-crafted features or convolutional neural networks (CNNs) pre-trained on ImageNet, while the artificial error or domain gaps may affect the survival prediction performance. Besides, the limited information representation of local sampling patches will create a bottleneck limitation on the effectiveness of prediction. To address the above challenges, we propose a novel patch sampling strategy based on image information entropy and construct a Multi-Scale feature Fusion Network (MSFN) based on self-supervised feature extractor. Specifically, we adopt image information entropy as a criterion to select representative sampling patches, thereby avoiding the noise interference caused by random to blank regions. Meanwhile, we pretrain the feature extractor utilizing self-supervised learning mechanism to improve the efficiency of feature extraction. Furthermore, a global-local feature fusion prediction network based on the attention mechanism is constructed to improve the survival prediction effect of WSIs with comprehensive multi-scale information representation. The proposed method is validated by adequate experiments and achieves competitive results on both of the most popular WSIs survival analysis datasets, TCGA-GBM and TCGA-LUSC. Code and trained models are made available at: https://github.com/Mercuriiio/MSFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿颜色完成签到 ,获得积分10
刚刚
allenwu完成签到,获得积分20
刚刚
语音与发布了新的文献求助10
1秒前
1秒前
1秒前
余如龙完成签到,获得积分10
1秒前
生生不息完成签到,获得积分10
1秒前
CCsci完成签到 ,获得积分10
1秒前
科研通AI2S应助asdfqwer采纳,获得10
1秒前
冷艳的纸鹤完成签到,获得积分10
1秒前
newboy_wxs完成签到,获得积分10
1秒前
利好完成签到 ,获得积分10
2秒前
ATOM完成签到,获得积分20
2秒前
zuojiayu关注了科研通微信公众号
3秒前
sunshitao发布了新的文献求助30
3秒前
媛媛完成签到 ,获得积分10
3秒前
3秒前
Stella应助tdtk采纳,获得30
4秒前
4秒前
爱学习的飞翔人完成签到,获得积分10
4秒前
4秒前
鲤鱼荔枝发布了新的文献求助10
4秒前
辛勤誉完成签到 ,获得积分10
5秒前
耳东完成签到,获得积分10
5秒前
5秒前
哭泣藏花完成签到 ,获得积分10
5秒前
William鉴哲发布了新的文献求助10
5秒前
haoyooo发布了新的文献求助10
5秒前
斯文的道罡完成签到,获得积分10
5秒前
Criminology34应助鹅鹅鹅丶采纳,获得10
6秒前
Stella应助大聪明采纳,获得30
6秒前
bkagyin应助Inspiring采纳,获得10
6秒前
风中巧曼完成签到,获得积分10
7秒前
8秒前
chengli完成签到,获得积分10
9秒前
炙热静白发布了新的文献求助10
9秒前
10秒前
MayoCQ完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337738
求助须知:如何正确求助?哪些是违规求助? 4474923
关于积分的说明 13926546
捐赠科研通 4369947
什么是DOI,文献DOI怎么找? 2401099
邀请新用户注册赠送积分活动 1394118
关于科研通互助平台的介绍 1366037