已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Self-supervised learning-based Multi-Scale feature Fusion Network for survival analysis from whole slide images

计算机科学 人工智能 特征提取 模式识别(心理学) 卷积神经网络 特征(语言学) 特征学习 随机森林 熵(时间箭头) 数据挖掘 机器学习 语言学 量子力学 物理 哲学
作者
L. K. Li,Yong Liang,Mingwen Shao,Shanghui Lu,Shuilin Liao,Dong Ouyang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:153: 106482-106482 被引量:13
标识
DOI:10.1016/j.compbiomed.2022.106482
摘要

Understanding prognosis and mortality is critical for evaluating the treatment plan of patients. Advances in digital pathology and deep learning techniques have made it practical to perform survival analysis in whole slide images (WSIs). Current methods are usually based on a multi-stage framework which includes patch sampling, feature extraction and prediction. However, the random patch sampling strategy is highly unstable and prone to sampling non-ROI. Feature extraction typically relies on hand-crafted features or convolutional neural networks (CNNs) pre-trained on ImageNet, while the artificial error or domain gaps may affect the survival prediction performance. Besides, the limited information representation of local sampling patches will create a bottleneck limitation on the effectiveness of prediction. To address the above challenges, we propose a novel patch sampling strategy based on image information entropy and construct a Multi-Scale feature Fusion Network (MSFN) based on self-supervised feature extractor. Specifically, we adopt image information entropy as a criterion to select representative sampling patches, thereby avoiding the noise interference caused by random to blank regions. Meanwhile, we pretrain the feature extractor utilizing self-supervised learning mechanism to improve the efficiency of feature extraction. Furthermore, a global-local feature fusion prediction network based on the attention mechanism is constructed to improve the survival prediction effect of WSIs with comprehensive multi-scale information representation. The proposed method is validated by adequate experiments and achieves competitive results on both of the most popular WSIs survival analysis datasets, TCGA-GBM and TCGA-LUSC. Code and trained models are made available at: https://github.com/Mercuriiio/MSFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心求学完成签到 ,获得积分10
2秒前
5秒前
zkeeee发布了新的文献求助10
5秒前
11秒前
简单冰巧发布了新的文献求助10
12秒前
汪姝完成签到,获得积分10
13秒前
33关闭了33文献求助
15秒前
汪姝发布了新的文献求助10
15秒前
邓晓霞完成签到,获得积分10
16秒前
18秒前
小菜鸟001发布了新的文献求助10
19秒前
19秒前
思源应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
19秒前
丘比特应助科研通管家采纳,获得20
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
20秒前
20秒前
wddfz完成签到,获得积分10
20秒前
平淡小丸子完成签到 ,获得积分10
21秒前
21秒前
kiki发布了新的文献求助10
23秒前
26秒前
26秒前
30秒前
木木发布了新的文献求助10
31秒前
彭于晏应助劉浏琉采纳,获得10
36秒前
七七完成签到,获得积分20
36秒前
39秒前
39秒前
完美世界应助木木采纳,获得10
40秒前
42秒前
七七发布了新的文献求助30
43秒前
46秒前
47秒前
单纯的乌冬面完成签到,获得积分10
49秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712637
求助须知:如何正确求助?哪些是违规求助? 3260776
关于积分的说明 9915045
捐赠科研通 2974351
什么是DOI,文献DOI怎么找? 1630867
邀请新用户注册赠送积分活动 773738
科研通“疑难数据库(出版商)”最低求助积分说明 744404