Self-supervised learning-based Multi-Scale feature Fusion Network for survival analysis from whole slide images

计算机科学 人工智能 特征提取 模式识别(心理学) 卷积神经网络 特征(语言学) 特征学习 随机森林 熵(时间箭头) 数据挖掘 机器学习 语言学 量子力学 物理 哲学
作者
L. K. Li,Yong Liang,Mingwen Shao,Shanghui Lu,Shuilin Liao,Dong Ouyang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:153: 106482-106482 被引量:13
标识
DOI:10.1016/j.compbiomed.2022.106482
摘要

Understanding prognosis and mortality is critical for evaluating the treatment plan of patients. Advances in digital pathology and deep learning techniques have made it practical to perform survival analysis in whole slide images (WSIs). Current methods are usually based on a multi-stage framework which includes patch sampling, feature extraction and prediction. However, the random patch sampling strategy is highly unstable and prone to sampling non-ROI. Feature extraction typically relies on hand-crafted features or convolutional neural networks (CNNs) pre-trained on ImageNet, while the artificial error or domain gaps may affect the survival prediction performance. Besides, the limited information representation of local sampling patches will create a bottleneck limitation on the effectiveness of prediction. To address the above challenges, we propose a novel patch sampling strategy based on image information entropy and construct a Multi-Scale feature Fusion Network (MSFN) based on self-supervised feature extractor. Specifically, we adopt image information entropy as a criterion to select representative sampling patches, thereby avoiding the noise interference caused by random to blank regions. Meanwhile, we pretrain the feature extractor utilizing self-supervised learning mechanism to improve the efficiency of feature extraction. Furthermore, a global-local feature fusion prediction network based on the attention mechanism is constructed to improve the survival prediction effect of WSIs with comprehensive multi-scale information representation. The proposed method is validated by adequate experiments and achieves competitive results on both of the most popular WSIs survival analysis datasets, TCGA-GBM and TCGA-LUSC. Code and trained models are made available at: https://github.com/Mercuriiio/MSFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
q792309106发布了新的文献求助10
刚刚
huazi发布了新的文献求助10
1秒前
1秒前
搜集达人应助危机的冷风采纳,获得10
1秒前
虎咪咪完成签到,获得积分10
2秒前
雨后阳光完成签到,获得积分10
2秒前
长情箴完成签到 ,获得积分10
3秒前
3秒前
NEUROVASCULAR发布了新的文献求助10
4秒前
www发布了新的文献求助10
5秒前
hjkluo发布了新的文献求助10
7秒前
科目三应助zhhhh03采纳,获得10
7秒前
缥缈的寻琴应助白浩采纳,获得10
7秒前
长白完成签到,获得积分10
8秒前
9秒前
无花果应助huazi采纳,获得10
9秒前
juanjuan完成签到,获得积分10
9秒前
优秀的莹完成签到,获得积分10
10秒前
LUNWENREQUEST完成签到,获得积分10
11秒前
FashionBoy应助张aa采纳,获得20
11秒前
11秒前
11秒前
11秒前
司空天佑完成签到,获得积分10
12秒前
黄建林完成签到,获得积分10
12秒前
oh应助mini采纳,获得10
12秒前
12秒前
思源应助sunrise采纳,获得10
13秒前
xixi发布了新的文献求助10
13秒前
13秒前
威武从霜发布了新的文献求助10
14秒前
研友_LMg3PZ完成签到,获得积分10
15秒前
www完成签到,获得积分10
16秒前
打打应助优秀的莹采纳,获得10
16秒前
黄建林发布了新的文献求助10
16秒前
17秒前
17秒前
尺子尺子和池子完成签到,获得积分10
17秒前
17秒前
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014