葡萄糖氧化酶
葡萄糖酸
材料科学
伤口愈合
双金属片
自愈水凝胶
双金属
肉芽组织
纳米技术
化学
金属
有机化学
医学
生物传感器
冶金
复合材料
高分子化学
免疫学
作者
Meng Tian,Liping Zhou,Chuan Fan,Lirong Wang,Xiangfang Lin,Yongqiang Wen,Lei Su,Haifeng Dong
标识
DOI:10.1016/j.actbio.2022.12.049
摘要
Antibiotic resistance of bacteria and persistent inflammation are critical challenges in treating bacteria infected wounds. Thus, it is urgent to develop versatile wound dressings that possess high-efficiency antibacterial performance and inflammation regulation. Herein, we have successfully constructed a hydrogel wound dressing consisting of the bimetallic metal-organic framework (MOF) loaded with glucose oxidase (GOx), termed as MOF(Fe-Cu)/GOx-polyacrylamide (PAM) gel. Hydrogel dressings can provide an efficient cascade-catalyzed system to accelerate wound healing via synergistic antibacterial and inflammatory modulation. Importantly, the catalytic property of the bimetallic MOF(Fe-Cu) is about five times that of the monometallic MOF(Fe). Based on such a cascade-catalyzed system, the abundant gluconic acid and H2O2 can be continuously produced by decomposing glucose via GOx. Such gluconic acid can notably improve the peroxidase performance of MOF(Fe-Cu), which can further efficiently decompose H2O2 to achieve the antibacterial. Meanwhile, MOF (Fe Cu)/GOx PAM gel can induce macrophages to change into an M2 phenotype, which can accelerate the transformation of the wound microenvironment to a remodeling state and then accelerate angiogenesis and neurogenesis. This work provides multifunctional bioactive materials for accelerating wound healing and will have great potential in clinical applications. Antibiotic resistance and persistent inflammation are still the critical reasons for the slow healing of bacteria infected wounds. Herein, we prepared a hydrogel wound dressing composed of bimetallic metal organic framework (MOF) loaded with glucose oxidase (GOx). The catalytic activity of the bimetallic MOF(Fe-Cu) is significantly enhanced due to doping of copper, which makes it possess outstanding antibacterial ability based on cascade catalysis. Such dressing can promote the remodeling of inflammatory immunity by regulating macrophage polarization to suppress over-reactive inflammation, further accelerating the healing of bacteria-infected wounds. This study provides an innovative and effective way to accelerate the healing of bacteria infected wound by combining bacteria killing and inflammation modulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI