Human-Factors-in-Driving-Loop: Driver Identification and Verification via a Deep Learning Approach using Psychological Behavioral Data

计算机科学 鉴定(生物学) 卷积神经网络 人工智能 块(置换群论) 特征提取 高级驾驶员辅助系统 分割 深度学习 驾驶模拟器 机器学习 模式识别(心理学) 模拟 植物 生物 几何学 数学
作者
Jiawei Xu,Sicheng Pan,Zhao-Hui Sun,Seop Hyeong Park,Kun Guo
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 3383-3394 被引量:85
标识
DOI:10.1109/tits.2022.3225782
摘要

Driver identification has been popular in the field of driving behavior analysis, which has a broad range of applications in anti-thief, driving style recognition, insurance strategy, and fleet management. However, most studies to date have only researched driver identification without a robust verification stage. This paper addresses driver identification and verification through a deep learning (DL) approach using psychological behavioral data, i.e., vehicle control operation data and eye movement data collected from a driving simulator and an eye tracker, respectively. We design an architecture that analyzes the segmentation windows of three-second data to capture unique driving characteristics and then differentiate drivers on that basis. The proposed model includes a fully convolutional network (FCN) and a squeeze-and-excitation (SE) block. Experimental results were obtained from 24 human participants driving in 12 different scenarios. The proposed driver identification system achieves an accuracy of 99.60% out of 15 drivers. To tackle driver verification, we combine the proposed architecture and a Siamese neural network, and then map all behavioral data into two embedding layers for similarity computation. The identification system achieves significant performance with average precision of 96.91%, recall of 95.80%, F1 score of 96.29%, and accuracy of 96.39%, respectively. Importantly, we scale out the verification system to imposter detection and achieve an average verification accuracy of 90.91%. These results imply the invariable characteristics from human factors rather than other traditional resources, which provides a superior solution for driving behavior authentication systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qianyun发布了新的文献求助10
刚刚
刚刚
1秒前
贪玩豪完成签到,获得积分10
2秒前
Snieno完成签到,获得积分10
2秒前
2秒前
闻元杰发布了新的文献求助10
4秒前
4秒前
4秒前
婷婷发布了新的文献求助50
4秒前
海天使完成签到,获得积分10
4秒前
Sally完成签到,获得积分10
5秒前
追寻迎夏发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
OVERLXRD完成签到,获得积分10
6秒前
呜呼啦呼完成签到 ,获得积分10
6秒前
7秒前
流星朵朵发布了新的文献求助10
7秒前
海天使发布了新的文献求助10
8秒前
8秒前
青年晚报发布了新的文献求助10
8秒前
9秒前
9秒前
顾矜应助cici采纳,获得10
10秒前
哦哟发布了新的文献求助10
10秒前
烟雨平生完成签到,获得积分10
11秒前
脑洞疼应助lwk205采纳,获得10
11秒前
热情晓灵发布了新的文献求助10
11秒前
sabet发布了新的文献求助10
11秒前
12秒前
chengcheng关注了科研通微信公众号
12秒前
paleo-地质发布了新的文献求助20
12秒前
歆兴欣完成签到 ,获得积分10
12秒前
13秒前
万能图书馆应助清晨采纳,获得10
14秒前
15秒前
西营发布了新的文献求助10
16秒前
上官若男应助五十一采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304724
求助须知:如何正确求助?哪些是违规求助? 2938716
关于积分的说明 8489688
捐赠科研通 2613208
什么是DOI,文献DOI怎么找? 1427182
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647547