Human-Factors-in-Driving-Loop: Driver Identification and Verification via a Deep Learning Approach using Psychological Behavioral Data

计算机科学 鉴定(生物学) 卷积神经网络 人工智能 块(置换群论) 特征提取 高级驾驶员辅助系统 分割 深度学习 驾驶模拟器 机器学习 模式识别(心理学) 模拟 生物 植物 数学 几何学
作者
Jiawei Xu,Sicheng Pan,Zhao-Hui Sun,Seop Hyeong Park,Kun Guo
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 3383-3394 被引量:85
标识
DOI:10.1109/tits.2022.3225782
摘要

Driver identification has been popular in the field of driving behavior analysis, which has a broad range of applications in anti-thief, driving style recognition, insurance strategy, and fleet management. However, most studies to date have only researched driver identification without a robust verification stage. This paper addresses driver identification and verification through a deep learning (DL) approach using psychological behavioral data, i.e., vehicle control operation data and eye movement data collected from a driving simulator and an eye tracker, respectively. We design an architecture that analyzes the segmentation windows of three-second data to capture unique driving characteristics and then differentiate drivers on that basis. The proposed model includes a fully convolutional network (FCN) and a squeeze-and-excitation (SE) block. Experimental results were obtained from 24 human participants driving in 12 different scenarios. The proposed driver identification system achieves an accuracy of 99.60% out of 15 drivers. To tackle driver verification, we combine the proposed architecture and a Siamese neural network, and then map all behavioral data into two embedding layers for similarity computation. The identification system achieves significant performance with average precision of 96.91%, recall of 95.80%, F1 score of 96.29%, and accuracy of 96.39%, respectively. Importantly, we scale out the verification system to imposter detection and achieve an average verification accuracy of 90.91%. These results imply the invariable characteristics from human factors rather than other traditional resources, which provides a superior solution for driving behavior authentication systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ann关注了科研通微信公众号
1秒前
1秒前
1秒前
官官发布了新的文献求助10
3秒前
迷你的无剑完成签到 ,获得积分10
3秒前
辰溪完成签到,获得积分10
3秒前
4秒前
稳重飞飞完成签到,获得积分10
4秒前
4秒前
知返发布了新的文献求助10
4秒前
5秒前
6秒前
田様应助bo采纳,获得10
6秒前
LGS发布了新的文献求助10
6秒前
容容容发布了新的文献求助10
6秒前
7秒前
Ava应助扶桑采纳,获得10
8秒前
ahq发布了新的文献求助10
9秒前
9秒前
xx完成签到 ,获得积分10
10秒前
辰溪发布了新的文献求助10
10秒前
任性映秋完成签到,获得积分10
11秒前
刻苦的丹妗完成签到,获得积分10
11秒前
12秒前
YUZI完成签到,获得积分20
12秒前
Owen应助奢侈的温馨问候采纳,获得10
13秒前
14秒前
Hello应助典雅的芷波采纳,获得10
14秒前
duck0008完成签到,获得积分10
15秒前
16秒前
16秒前
爆米花应助shkknx采纳,获得10
18秒前
18秒前
科研通AI5应助LGS采纳,获得10
19秒前
ann发布了新的文献求助10
20秒前
21秒前
彬彬嘉完成签到 ,获得积分10
21秒前
蓝风铃发布了新的文献求助10
21秒前
zzk完成签到,获得积分10
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228