Human-Factors-in-Driving-Loop: Driver Identification and Verification via a Deep Learning Approach using Psychological Behavioral Data

计算机科学 鉴定(生物学) 卷积神经网络 人工智能 块(置换群论) 特征提取 高级驾驶员辅助系统 分割 深度学习 驾驶模拟器 机器学习 模式识别(心理学) 模拟 生物 植物 数学 几何学
作者
Jiawei Xu,Sicheng Pan,Zhao-Hui Sun,Seop Hyeong Park,Kun Guo
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 3383-3394 被引量:85
标识
DOI:10.1109/tits.2022.3225782
摘要

Driver identification has been popular in the field of driving behavior analysis, which has a broad range of applications in anti-thief, driving style recognition, insurance strategy, and fleet management. However, most studies to date have only researched driver identification without a robust verification stage. This paper addresses driver identification and verification through a deep learning (DL) approach using psychological behavioral data, i.e., vehicle control operation data and eye movement data collected from a driving simulator and an eye tracker, respectively. We design an architecture that analyzes the segmentation windows of three-second data to capture unique driving characteristics and then differentiate drivers on that basis. The proposed model includes a fully convolutional network (FCN) and a squeeze-and-excitation (SE) block. Experimental results were obtained from 24 human participants driving in 12 different scenarios. The proposed driver identification system achieves an accuracy of 99.60% out of 15 drivers. To tackle driver verification, we combine the proposed architecture and a Siamese neural network, and then map all behavioral data into two embedding layers for similarity computation. The identification system achieves significant performance with average precision of 96.91%, recall of 95.80%, F1 score of 96.29%, and accuracy of 96.39%, respectively. Importantly, we scale out the verification system to imposter detection and achieve an average verification accuracy of 90.91%. These results imply the invariable characteristics from human factors rather than other traditional resources, which provides a superior solution for driving behavior authentication systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初步完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
猪猪hero发布了新的文献求助10
4秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
嘿嘿应助科研通管家采纳,获得10
5秒前
rebubu应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得30
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
直率代荷应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
不二子发布了新的文献求助10
6秒前
7秒前
7秒前
pancake发布了新的文献求助10
7秒前
务实的南露完成签到,获得积分10
9秒前
打打应助棋士采纳,获得10
9秒前
9秒前
yang完成签到,获得积分10
10秒前
咸鱼完成签到 ,获得积分10
12秒前
12秒前
12秒前
猪猪hero发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
13秒前
脑洞疼应助陈塘关守将采纳,获得10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694202
求助须知:如何正确求助?哪些是违规求助? 5096252
关于积分的说明 15213274
捐赠科研通 4850853
什么是DOI,文献DOI怎么找? 2602038
邀请新用户注册赠送积分活动 1553878
关于科研通互助平台的介绍 1511814