Nanoscale deformation of crystalline metals: Experiments and simulations

材料科学 成核 纳米尺度 位错 变形(气象学) 纳米棒 复合材料 压力(语言学) 变形机理 纳米线 可塑性 纵横比(航空) 流动应力 纳米技术 应变率 微观结构 热力学 物理 哲学 语言学
作者
Bozhao Wu,Yupeng Wu,Yangyang Pan,Ze Liu
出处
期刊:International Journal of Plasticity [Elsevier]
卷期号:161: 103501-103501 被引量:2
标识
DOI:10.1016/j.ijplas.2022.103501
摘要

In the present work, we performed experiments and molecular dynamic simulations to study the atomic physical process and deformation mechanism involved in nanoscale deformation of crystalline metals. By contact deforming bulk metals using hard molds with different cavity sizes at various temperatures and different stress levels, the flow of metals (e.g., Au and Ag) into nanocavities is quantified by the aspect ratio of molded micro-/nanorods, based on which the dependence of deformability on cavity size, temperature and stress is revealed. It is found that the critical forming pressure is determined by the entering barrier. Once the entering barrier can be overcome, quantified by the aspect ratio of metal nanorods, the molding efficiency increases with the cavity size decreasing. Moreover, three deformation modes are uncovered in the nanoscale plastic flow of metals and directly related with the atomic physical processes, i.e. atomic diffusion, dislocation nucleation, multiplication and movement. In the dislocation dominated temperature regime, a transition of deformation mode from burst growth to continuous growth is observed as the cavity size increases. When the mold cavity size is very small (100-101 nm), the metal atoms flowing in a mold cavity will arrange amorphously even at low temperature, which usually only occurs at high temperature for large cavity sizes. Therefore, reducing the size shows the same effect as increasing the temperature, making nanomolding easier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好大的晒发布了新的文献求助10
刚刚
浮游应助st采纳,获得10
1秒前
浮游应助st采纳,获得10
1秒前
Jasper应助危机的雍采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
FashionBoy应助icey采纳,获得10
3秒前
桐桐应助Rgly采纳,获得10
4秒前
Lucas应助子清采纳,获得10
4秒前
要减肥的书蕾关注了科研通微信公众号
4秒前
Akim应助无量采纳,获得10
4秒前
5秒前
华仔应助蘑菇腿采纳,获得10
6秒前
6秒前
香蕉觅云应助TiAmo采纳,获得10
6秒前
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得100
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
PPP完成签到,获得积分10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
清和漾完成签到,获得积分10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424545
求助须知:如何正确求助?哪些是违规求助? 4538904
关于积分的说明 14164157
捐赠科研通 4455851
什么是DOI,文献DOI怎么找? 2443924
邀请新用户注册赠送积分活动 1435060
关于科研通互助平台的介绍 1412438