RF-Siamese: Approaching Accurate RFID Gesture Recognition With One Sample

手势 计算机科学 分类器(UML) 人工智能 无线 手势识别 样品(材料) 公制(单位) 模式识别(心理学) 计算机视觉 电信 运营管理 色谱法 经济 化学
作者
Zijing Ma,Shigeng Zhang,Jia Liu,Xuan Liu,Weiping Wang,Jianxin Wang,Song Guo
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 797-811 被引量:8
标识
DOI:10.1109/tmc.2022.3217487
摘要

Performing accurate sensing in diverse environments is a challenging issue in wireless sensing technologies. Existing solutions usually require collecting a large number of samples to train a classifier for every environment, or further assume similar sample distribution between different environments such that a model trained in one environment can be transferred to another. In this paper, we propose RF-Siamese, an RFID-based gesture sensing approach that achieves comparable accuracy to existing solutions but requires only a few samples in each eivironment. RF-Siamese leverages Siamese networks to distinguish different gestures with only a small number of samples and is enhanced by several novel designs to achieve high accuracy in diverse environments. First, the network structure and parameters (e.g., loss function and distance metric) are carefully designed to be suitable for RFID gesture recognition. Second, a permutation-based dataset generation strategy is proposed to make full use of the collected samples to enhance the recognition accuracy. Third, a template matching method is proposed to extend the Siamese network to classify multiple gestures. Extensive experiments on commercial RFID devices demonstrate that RF-Siamese achieves a high accuracy of 0.93 with only one sample of each gesture when recognizing 18 different gestures, while state-of-the-art approaches based on transfer learning and meta learning achieve an accuracy of only 0.59 and 0.70, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一一发布了新的文献求助10
刚刚
刚刚
1秒前
MarvelerYB3完成签到,获得积分10
1秒前
1秒前
张佳铭完成签到,获得积分10
1秒前
meng完成签到,获得积分10
1秒前
1秒前
2秒前
归尘发布了新的文献求助10
2秒前
灯鸣乃月见完成签到,获得积分20
2秒前
思源应助FOLLOW采纳,获得10
2秒前
科目三应助科研小白采纳,获得10
3秒前
4秒前
专注的猫咪完成签到,获得积分10
4秒前
张佳铭发布了新的文献求助10
4秒前
5秒前
大模型应助非要起名采纳,获得10
5秒前
小小发布了新的文献求助50
5秒前
5秒前
xiexie发布了新的文献求助30
5秒前
团团团子发布了新的文献求助50
6秒前
Riggle G发布了新的文献求助10
7秒前
aimuo发布了新的文献求助10
8秒前
斯文败类应助结实的秋天采纳,获得10
8秒前
bb完成签到,获得积分20
9秒前
脑洞疼应助惠香香的采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
慧妞完成签到 ,获得积分10
11秒前
11秒前
11秒前
11秒前
嘿嘿发布了新的文献求助10
11秒前
归尘发布了新的文献求助10
12秒前
12秒前
科研通AI6应助啊啊啊啊跃采纳,获得10
12秒前
嗒嗒发布了新的文献求助10
13秒前
Owen应助理躺丁真采纳,获得10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726