清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning based on eye-tracking data to identify Autism Spectrum Disorder: A systematic review and meta-analysis

机器学习 人工智能 计算机科学 自闭症谱系障碍 荟萃分析 眼动 自闭症 心理学 医学 精神科 病理
作者
Qiuhong Wei,Huiling Cao,Yuan Shi,Ximing Xu,Tingyu Li
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:137: 104254-104254 被引量:38
标识
DOI:10.1016/j.jbi.2022.104254
摘要

Machine learning has been widely used to identify Autism Spectrum Disorder (ASD) based on eye-tracking, but its accuracy is uncertain. We aimed to summarize the available evidence on the performances of machine learning algorithms in classifying ASD and typically developing (TD) individuals based on eye-tracking data. We searched Medline, Embase, Web of Science, Scopus, Cochrane Library, IEEE Xplore Digital Library, Wan Fang Database, China National Knowledge Infrastructure, Chinese BioMedical Literature Database, VIP Database for Chinese Technical Periodicals, from database inception to December 24, 2021. Studies using machine learning methods to classify ASD and TD individuals based on eye-tracking technologies were included. We extracted the data on study population, model performances, algorithms of machine learning, and paradigms of eye-tracking. This study is registered with PROSPERO, CRD42022296037. 261 articles were identified, of which 24 studies with sample sizes ranging from 28 to 141 were included (n = 1396 individuals). Machine learning based on eye-tracking yielded the pooled classified accuracy of 81 % (I2 = 73 %), specificity of 79 % (I2 = 61 %), and sensitivity of 84 % (I2 = 61 %) in classifying ASD and TD individuals. In subgroup analysis, the accuracy was 88 % (95 % CI: 85–91 %), 79 % (95 % CI: 72–84 %), 71 % (95 % CI: 59–91 %) for preschool-aged, school-aged, and adolescent-adult group. Eye-tracking stimuli and machine learning algorithms varied widely across studies, with social, static, and active stimuli and Support Vector Machine and Random Forest most commonly reported. Regarding the model performance evaluation, 15 studies reported their final results on validation datasets, four based on testing datasets, and five did not report whether they used validation datasets. Most studies failed to report the information on eye-tracking hardware and the implementation process. Using eye-tracking data, machine learning has shown potential in identifying ASD individuals with high accuracy, especially in preschool-aged children. However, the heterogeneity between studies, the absence of test set-based performance evaluations, the small sample size, and the non-standardized implementation of eye-tracking might deteriorate the reliability of results. Further well-designed and well-executed studies with comprehensive and transparent reporting are needed to determine the optimal eye-tracking paradigms and machine learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
量子星尘发布了新的文献求助150
25秒前
伍柒叁发布了新的文献求助10
28秒前
binfo完成签到,获得积分10
30秒前
伍柒叁完成签到,获得积分10
35秒前
加贝完成签到 ,获得积分10
52秒前
bkagyin应助MY采纳,获得10
1分钟前
1分钟前
MY发布了新的文献求助10
1分钟前
简奥斯汀完成签到 ,获得积分10
2分钟前
房天川完成签到 ,获得积分10
2分钟前
Raunio完成签到,获得积分10
2分钟前
Able完成签到,获得积分10
3分钟前
紫熊发布了新的文献求助10
3分钟前
彩色亿先完成签到 ,获得积分10
3分钟前
冰封火种发布了新的文献求助10
3分钟前
Hello应助Lss采纳,获得10
3分钟前
fufufu123完成签到 ,获得积分10
5分钟前
5分钟前
李志全完成签到 ,获得积分10
5分钟前
NexusExplorer应助紫熊采纳,获得10
5分钟前
Zoom应助xun采纳,获得10
5分钟前
Kai完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助100
6分钟前
xun完成签到,获得积分20
6分钟前
雅诺德琳发布了新的文献求助30
6分钟前
123123完成签到 ,获得积分10
7分钟前
8分钟前
堪捕发布了新的文献求助30
8分钟前
紫熊完成签到,获得积分10
8分钟前
萝卜猪发布了新的文献求助10
8分钟前
呆萌冰彤完成签到 ,获得积分10
9分钟前
9分钟前
GingerF应助科研通管家采纳,获得50
9分钟前
桐桐应助科研通管家采纳,获得10
9分钟前
GingerF应助科研通管家采纳,获得150
9分钟前
SCH_zhu完成签到,获得积分10
10分钟前
00完成签到 ,获得积分10
11分钟前
aowulan完成签到 ,获得积分10
11分钟前
冉亦完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4901166
求助须知:如何正确求助?哪些是违规求助? 4180698
关于积分的说明 12977201
捐赠科研通 3945594
什么是DOI,文献DOI怎么找? 2164200
邀请新用户注册赠送积分活动 1182511
关于科研通互助平台的介绍 1088853