Machine learning based on eye-tracking data to identify Autism Spectrum Disorder: A systematic review and meta-analysis

机器学习 人工智能 计算机科学 自闭症谱系障碍 随机森林 荟萃分析 梅德林 眼动 斯科普斯 支持向量机 科克伦图书馆 自闭症 医学 精神科 病理 法学 政治学
作者
Qiuhong Wei,Huiling Cao,Yuan Shi,Ximing Xu,Tingyu Li
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:137: 104254-104254 被引量:31
标识
DOI:10.1016/j.jbi.2022.104254
摘要

Machine learning has been widely used to identify Autism Spectrum Disorder (ASD) based on eye-tracking, but its accuracy is uncertain. We aimed to summarize the available evidence on the performances of machine learning algorithms in classifying ASD and typically developing (TD) individuals based on eye-tracking data. We searched Medline, Embase, Web of Science, Scopus, Cochrane Library, IEEE Xplore Digital Library, Wan Fang Database, China National Knowledge Infrastructure, Chinese BioMedical Literature Database, VIP Database for Chinese Technical Periodicals, from database inception to December 24, 2021. Studies using machine learning methods to classify ASD and TD individuals based on eye-tracking technologies were included. We extracted the data on study population, model performances, algorithms of machine learning, and paradigms of eye-tracking. This study is registered with PROSPERO, CRD42022296037. 261 articles were identified, of which 24 studies with sample sizes ranging from 28 to 141 were included (n = 1396 individuals). Machine learning based on eye-tracking yielded the pooled classified accuracy of 81 % (I2 = 73 %), specificity of 79 % (I2 = 61 %), and sensitivity of 84 % (I2 = 61 %) in classifying ASD and TD individuals. In subgroup analysis, the accuracy was 88 % (95 % CI: 85–91 %), 79 % (95 % CI: 72–84 %), 71 % (95 % CI: 59–91 %) for preschool-aged, school-aged, and adolescent-adult group. Eye-tracking stimuli and machine learning algorithms varied widely across studies, with social, static, and active stimuli and Support Vector Machine and Random Forest most commonly reported. Regarding the model performance evaluation, 15 studies reported their final results on validation datasets, four based on testing datasets, and five did not report whether they used validation datasets. Most studies failed to report the information on eye-tracking hardware and the implementation process. Using eye-tracking data, machine learning has shown potential in identifying ASD individuals with high accuracy, especially in preschool-aged children. However, the heterogeneity between studies, the absence of test set-based performance evaluations, the small sample size, and the non-standardized implementation of eye-tracking might deteriorate the reliability of results. Further well-designed and well-executed studies with comprehensive and transparent reporting are needed to determine the optimal eye-tracking paradigms and machine learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
miemie完成签到,获得积分10
1秒前
2秒前
bubble完成签到,获得积分10
2秒前
鹌鹑蛋发布了新的文献求助10
3秒前
十一完成签到 ,获得积分10
4秒前
5秒前
restudy68发布了新的文献求助10
6秒前
cyn完成签到,获得积分10
6秒前
6秒前
7秒前
Shaw发布了新的文献求助10
7秒前
8秒前
tuotuo完成签到,获得积分10
8秒前
8秒前
缓慢的觅云应助投石问路采纳,获得50
8秒前
华仔应助KEYAN采纳,获得10
9秒前
10秒前
liu发布了新的文献求助10
11秒前
echo发布了新的文献求助10
11秒前
11秒前
11秒前
YIN完成签到,获得积分10
12秒前
12秒前
我是老大应助ting采纳,获得50
12秒前
欣慰水彤完成签到,获得积分10
13秒前
要努力坚持啊完成签到,获得积分10
13秒前
犹豫酸奶完成签到,获得积分10
14秒前
14秒前
s0x0y0发布了新的文献求助10
15秒前
温暖的芷雪给温暖的芷雪的求助进行了留言
15秒前
cz发布了新的文献求助10
15秒前
16秒前
16秒前
清脆语海发布了新的文献求助10
17秒前
17秒前
19秒前
提桶跑路完成签到,获得积分10
19秒前
木木阳关注了科研通微信公众号
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150106
求助须知:如何正确求助?哪些是违规求助? 2801196
关于积分的说明 7843534
捐赠科研通 2458660
什么是DOI,文献DOI怎么找? 1308585
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721