Joint or decoupled optimization: Multi-UAV path planning for search and rescue

无人机 搜救 计算机科学 路径(计算) 规划师 运动规划 灵活性(工程) 方案(数学) 继电器 实时计算 人工智能 计算机网络 数学 机器人 数学分析 物理 功率(物理) 统计 生物 量子力学 遗传学
作者
Evşen Yanmaz
出处
期刊:Ad hoc networks [Elsevier]
卷期号:138: 103018-103018 被引量:33
标识
DOI:10.1016/j.adhoc.2022.103018
摘要

In this paper, we focus on path planning of drone teams deployed for search and rescue missions. The goal of the mission is to detect a target, inform the rescue personnel at the ground base station (BS), and form a communication relay chain between the target and the BS as fast as possible. Such missions where both detection and connectivity requirements need to be met can be planned by formulating (i) a single objective optimization problem with connectivity constraints; (ii) a multi-objective optimization problem where mission and connectivity needs are jointly optimized or (iii) mission and connectivity tasks are optimized decoupled from each other. Both joint and decoupled approaches have merit in terms of mission times, connectivity, cost and/or implementation. In this paper, we compare selected joint and decoupled multi-drone path planning approaches from mission and connectivity perspectives. We illustrate the trade-off between performance metrics from both viewpoints and show that depending on the available resources (e.g., number of drones) and the search area most suitable planner can change. We then propose a hybrid planner that utilizes joint optimization for the search drones and decoupled optimization for the relay drones. Hence, the proposed scheme has a flexibility due to allowing different search path planners to be used and a connectivity-wise better pre-mission plan. Our analysis shows that the hybrid scheme results in a better connectivity and total mission time if there are enough drones, but for very small number of search drones, hybrid scheme leads to a higher mission time than the joint scheme due to reservation of drones for relaying purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助甜筒采纳,获得10
刚刚
诺诺完成签到 ,获得积分10
1秒前
英俊的铭应助lx123采纳,获得10
1秒前
教育厮完成签到,获得积分10
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
YUYU芋头完成签到,获得积分10
3秒前
3秒前
3秒前
自由访梦完成签到,获得积分20
3秒前
libaokuu完成签到,获得积分10
4秒前
充电宝应助陈秋妮采纳,获得10
5秒前
5秒前
5秒前
6秒前
在水一方应助意大利采纳,获得20
6秒前
yueban完成签到,获得积分10
7秒前
哈哈哈发布了新的文献求助10
7秒前
果果航发布了新的文献求助10
7秒前
LKT发布了新的文献求助10
7秒前
8秒前
9秒前
常常完成签到,获得积分10
10秒前
星海极光发布了新的文献求助10
10秒前
augenstern发布了新的文献求助10
10秒前
xuedun应助小七采纳,获得10
10秒前
田様应助小七采纳,获得10
10秒前
慕青应助小七采纳,获得10
10秒前
FashionBoy应助小七采纳,获得10
10秒前
Owen应助小七采纳,获得10
10秒前
Ava应助小七采纳,获得10
10秒前
11秒前
威武好吐司完成签到,获得积分10
11秒前
黄豆酱发布了新的文献求助10
12秒前
义气丹雪应助鲸鱼打滚采纳,获得10
12秒前
14秒前
犹豫的南完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705070
求助须知:如何正确求助?哪些是违规求助? 5160498
关于积分的说明 15243798
捐赠科研通 4858886
什么是DOI,文献DOI怎么找? 2607466
邀请新用户注册赠送积分活动 1558571
关于科研通互助平台的介绍 1516188