Joint or decoupled optimization: Multi-UAV path planning for search and rescue

无人机 搜救 计算机科学 路径(计算) 规划师 运动规划 灵活性(工程) 方案(数学) 继电器 实时计算 人工智能 计算机网络 数学 机器人 数学分析 物理 功率(物理) 统计 生物 量子力学 遗传学
作者
Evşen Yanmaz
出处
期刊:Ad hoc networks [Elsevier]
卷期号:138: 103018-103018 被引量:33
标识
DOI:10.1016/j.adhoc.2022.103018
摘要

In this paper, we focus on path planning of drone teams deployed for search and rescue missions. The goal of the mission is to detect a target, inform the rescue personnel at the ground base station (BS), and form a communication relay chain between the target and the BS as fast as possible. Such missions where both detection and connectivity requirements need to be met can be planned by formulating (i) a single objective optimization problem with connectivity constraints; (ii) a multi-objective optimization problem where mission and connectivity needs are jointly optimized or (iii) mission and connectivity tasks are optimized decoupled from each other. Both joint and decoupled approaches have merit in terms of mission times, connectivity, cost and/or implementation. In this paper, we compare selected joint and decoupled multi-drone path planning approaches from mission and connectivity perspectives. We illustrate the trade-off between performance metrics from both viewpoints and show that depending on the available resources (e.g., number of drones) and the search area most suitable planner can change. We then propose a hybrid planner that utilizes joint optimization for the search drones and decoupled optimization for the relay drones. Hence, the proposed scheme has a flexibility due to allowing different search path planners to be used and a connectivity-wise better pre-mission plan. Our analysis shows that the hybrid scheme results in a better connectivity and total mission time if there are enough drones, but for very small number of search drones, hybrid scheme leads to a higher mission time than the joint scheme due to reservation of drones for relaying purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咖啡油條完成签到,获得积分10
1秒前
1秒前
咻咻发布了新的文献求助10
3秒前
3秒前
kkk完成签到 ,获得积分10
6秒前
蓝天发布了新的文献求助10
8秒前
135完成签到 ,获得积分10
8秒前
宫立辉发布了新的文献求助10
8秒前
坚定岂愈完成签到,获得积分10
10秒前
12秒前
豆子完成签到,获得积分10
13秒前
LaTeXer应助陈陈采纳,获得80
13秒前
迷路芝麻完成签到,获得积分10
14秒前
14秒前
BONe完成签到,获得积分10
14秒前
苟玉琴完成签到,获得积分10
15秒前
过时的不评完成签到,获得积分10
15秒前
16秒前
传奇3应助yu采纳,获得10
17秒前
17秒前
18秒前
19秒前
ppsweek发布了新的文献求助10
19秒前
小南子完成签到,获得积分10
20秒前
su完成签到,获得积分10
20秒前
135发布了新的文献求助50
20秒前
zjh发布了新的文献求助10
20秒前
平常艳一发布了新的文献求助10
20秒前
20秒前
lll发布了新的文献求助10
21秒前
冰月雪蝶发布了新的文献求助10
21秒前
星辰大海应助朱晖采纳,获得10
22秒前
jerry_x发布了新的文献求助10
24秒前
24秒前
wsysweet完成签到,获得积分10
25秒前
沧海云完成签到 ,获得积分0
26秒前
一去完成签到 ,获得积分10
26秒前
彭于晏应助ppsweek采纳,获得10
27秒前
量子星尘发布了新的文献求助10
27秒前
Hello应助67n采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774957
求助须知:如何正确求助?哪些是违规求助? 5620753
关于积分的说明 15437173
捐赠科研通 4907368
什么是DOI,文献DOI怎么找? 2640630
邀请新用户注册赠送积分活动 1588544
关于科研通互助平台的介绍 1543412