Joint or decoupled optimization: Multi-UAV path planning for search and rescue

无人机 搜救 计算机科学 路径(计算) 规划师 运动规划 灵活性(工程) 方案(数学) 继电器 实时计算 人工智能 计算机网络 数学 机器人 数学分析 物理 功率(物理) 统计 生物 量子力学 遗传学
作者
Evşen Yanmaz
出处
期刊:Ad hoc networks [Elsevier]
卷期号:138: 103018-103018 被引量:33
标识
DOI:10.1016/j.adhoc.2022.103018
摘要

In this paper, we focus on path planning of drone teams deployed for search and rescue missions. The goal of the mission is to detect a target, inform the rescue personnel at the ground base station (BS), and form a communication relay chain between the target and the BS as fast as possible. Such missions where both detection and connectivity requirements need to be met can be planned by formulating (i) a single objective optimization problem with connectivity constraints; (ii) a multi-objective optimization problem where mission and connectivity needs are jointly optimized or (iii) mission and connectivity tasks are optimized decoupled from each other. Both joint and decoupled approaches have merit in terms of mission times, connectivity, cost and/or implementation. In this paper, we compare selected joint and decoupled multi-drone path planning approaches from mission and connectivity perspectives. We illustrate the trade-off between performance metrics from both viewpoints and show that depending on the available resources (e.g., number of drones) and the search area most suitable planner can change. We then propose a hybrid planner that utilizes joint optimization for the search drones and decoupled optimization for the relay drones. Hence, the proposed scheme has a flexibility due to allowing different search path planners to be used and a connectivity-wise better pre-mission plan. Our analysis shows that the hybrid scheme results in a better connectivity and total mission time if there are enough drones, but for very small number of search drones, hybrid scheme leads to a higher mission time than the joint scheme due to reservation of drones for relaying purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丢丢发布了新的文献求助10
刚刚
刚刚
nan完成签到,获得积分10
1秒前
小包子完成签到,获得积分10
1秒前
gy发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
小马甲应助犹豫晓啸采纳,获得10
1秒前
乐乐应助Benjamin采纳,获得10
1秒前
2秒前
gyh发布了新的文献求助10
2秒前
JPH1990完成签到,获得积分10
3秒前
踏雾发布了新的文献求助10
3秒前
怡然的怜烟应助向雫采纳,获得20
4秒前
xiaohe完成签到,获得积分10
4秒前
大模型应助火星上安萱采纳,获得10
4秒前
不乖完成签到,获得积分10
4秒前
renyi97完成签到,获得积分20
4秒前
SJJ应助sdss采纳,获得10
4秒前
甜甜亦丝发布了新的文献求助10
5秒前
5秒前
AhhHuang应助sunyanghu369采纳,获得10
5秒前
6秒前
Ava应助老实的灯泡采纳,获得10
6秒前
6秒前
xiao xu发布了新的文献求助10
7秒前
7秒前
哒哒完成签到,获得积分20
7秒前
slayersqin发布了新的文献求助10
7秒前
8秒前
8秒前
小小的世界完成签到,获得积分10
8秒前
8秒前
一口蛋黄苏完成签到,获得积分10
8秒前
星辰大海应助king采纳,获得10
8秒前
在一发布了新的文献求助10
9秒前
斯文败类应助You采纳,获得10
9秒前
9秒前
9秒前
隐形曼青应助charcw采纳,获得10
10秒前
香蕉菠娜娜完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041