Deep learning near-infrared quality prediction based on multi-level dynamic feature

计算机科学 特征(语言学) 人工智能 模式识别(心理学) 冗余(工程) 共线性 人工神经网络 数据挖掘 数学 几何学 语言学 操作系统 哲学
作者
Zihao Chen,Xiaoli Luan,Fei Liu
出处
期刊:Vibrational Spectroscopy [Elsevier BV]
卷期号:123: 103450-103450 被引量:1
标识
DOI:10.1016/j.vibspec.2022.103450
摘要

As a fast, efficient, nondestructive, and pollution-free technology, near-infrared spectroscopy (NIRS) has become a practical method for online quality prediction in the process industry. The inherent dynamics of the industrial processes make the NIR spectral data no longer accord with the assumption of independent and identically distributed, which leads to the limitations of the static quality prediction models. In addition, the existing NIRS-based quality prediction methods lack consideration of the possible nonlinear relationship between NIR spectra and quality variables of complex organic samples and the over sensitivity brought by molecular-level detection. This paper proposes a multi-level dynamic feature-based deep learning NIR quality prediction method to solve the above problems. Firstly, short-term feature extraction is mainly based on 2D convolution neural networks (CNNs) to extract short-term dynamic features and eliminate the multi-collinearity and information redundancy with a 2D NIR dynamic spectral matrix input. Thereinto, considering the levels of short-term dynamic features, a combination of dilated CNN and the dense connection is proposed to construct the multi-level features and ensure the continuisty and integrity of the time dimension. Secondly, based on the extracted short-term dynamic features, the long-term dynamic spectral prediction constructed with gate recurrent unit (GRU) is proposed to capture long-term dependence between NIR spectra and predict the NIR spectrum at the next time step. Here, considering the inability of the original GRU to take account of the dynamic feature at all time steps and the possible time lag between industrial laboratory sampling and NIRS detection, temporal attention is utilized to redistribute and fuse the dynamic features of the GRU at all time steps. Finally, a fully connected layer is used to realize the regression from the NIR spectrum of the next moment to the corresponding quality variables. The effectiveness and accuracy of the method are verified by a case of the reaction and distillation process of 2,6 xylenol and corresponding NIR spectral data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助T拐拐采纳,获得10
1秒前
1秒前
在水一方应助JoshuaChen采纳,获得10
1秒前
1秒前
1秒前
小艳胡发布了新的文献求助10
2秒前
SYLH应助Ethan采纳,获得10
2秒前
Z1987完成签到,获得积分10
2秒前
白凌珍发布了新的文献求助10
2秒前
自由的水绿完成签到 ,获得积分10
2秒前
完美世界应助如意枫叶采纳,获得10
2秒前
忐忑的以旋完成签到,获得积分10
3秒前
3秒前
温暖的颜演完成签到,获得积分10
3秒前
艾斯喜爱发布了新的文献求助10
4秒前
4秒前
仲某某完成签到,获得积分10
4秒前
明明发布了新的文献求助10
4秒前
今后应助xiaxianong采纳,获得10
4秒前
6秒前
乘风破浪完成签到,获得积分10
6秒前
egnaro应助埋骨何须桑梓地采纳,获得10
6秒前
yannnis发布了新的文献求助10
7秒前
孙福禄应助Star1983采纳,获得10
7秒前
7秒前
8秒前
Demonmaster完成签到,获得积分10
8秒前
元气糖发布了新的文献求助10
8秒前
凝望那片海2020完成签到,获得积分10
8秒前
清爽问夏发布了新的文献求助10
8秒前
9秒前
9秒前
Lee完成签到 ,获得积分10
9秒前
9秒前
钱小二发布了新的文献求助10
10秒前
10秒前
315947完成签到,获得积分10
10秒前
11秒前
冰阔落发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600