Deep learning near-infrared quality prediction based on multi-level dynamic feature

计算机科学 特征(语言学) 人工智能 模式识别(心理学) 冗余(工程) 共线性 人工神经网络 数据挖掘 数学 几何学 语言学 操作系统 哲学
作者
Zihao Chen,Xiaoli Luan,Fei Liu
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:123: 103450-103450 被引量:1
标识
DOI:10.1016/j.vibspec.2022.103450
摘要

As a fast, efficient, nondestructive, and pollution-free technology, near-infrared spectroscopy (NIRS) has become a practical method for online quality prediction in the process industry. The inherent dynamics of the industrial processes make the NIR spectral data no longer accord with the assumption of independent and identically distributed, which leads to the limitations of the static quality prediction models. In addition, the existing NIRS-based quality prediction methods lack consideration of the possible nonlinear relationship between NIR spectra and quality variables of complex organic samples and the over sensitivity brought by molecular-level detection. This paper proposes a multi-level dynamic feature-based deep learning NIR quality prediction method to solve the above problems. Firstly, short-term feature extraction is mainly based on 2D convolution neural networks (CNNs) to extract short-term dynamic features and eliminate the multi-collinearity and information redundancy with a 2D NIR dynamic spectral matrix input. Thereinto, considering the levels of short-term dynamic features, a combination of dilated CNN and the dense connection is proposed to construct the multi-level features and ensure the continuisty and integrity of the time dimension. Secondly, based on the extracted short-term dynamic features, the long-term dynamic spectral prediction constructed with gate recurrent unit (GRU) is proposed to capture long-term dependence between NIR spectra and predict the NIR spectrum at the next time step. Here, considering the inability of the original GRU to take account of the dynamic feature at all time steps and the possible time lag between industrial laboratory sampling and NIRS detection, temporal attention is utilized to redistribute and fuse the dynamic features of the GRU at all time steps. Finally, a fully connected layer is used to realize the regression from the NIR spectrum of the next moment to the corresponding quality variables. The effectiveness and accuracy of the method are verified by a case of the reaction and distillation process of 2,6 xylenol and corresponding NIR spectral data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助YJYLU采纳,获得10
刚刚
猪猪hero发布了新的文献求助10
刚刚
在水一方应助扎心采纳,获得10
刚刚
刚刚
刚刚
1秒前
orixero应助海燕采纳,获得10
3秒前
3秒前
ronnie发布了新的文献求助10
3秒前
4秒前
5秒前
zjq发布了新的文献求助10
5秒前
隐形饼干发布了新的文献求助10
5秒前
开心发布了新的文献求助10
6秒前
8秒前
www完成签到,获得积分10
8秒前
就像思念发布了新的文献求助10
8秒前
yt发布了新的文献求助10
8秒前
yyd完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
健忘芷完成签到,获得积分10
9秒前
111完成签到,获得积分10
10秒前
10秒前
10秒前
筋筋子发布了新的文献求助10
11秒前
11秒前
猪猪hero发布了新的文献求助10
11秒前
li发布了新的文献求助10
11秒前
12秒前
12秒前
yupeng_xu完成签到 ,获得积分10
12秒前
13秒前
黄大师发布了新的文献求助10
13秒前
13秒前
14秒前
优雅山柏发布了新的文献求助10
15秒前
YJYLU发布了新的文献求助10
15秒前
扎心发布了新的文献求助10
16秒前
霍师傅发布了新的文献求助50
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610394
求助须知:如何正确求助?哪些是违规求助? 4694892
关于积分的说明 14884996
捐赠科研通 4722310
什么是DOI,文献DOI怎么找? 2545126
邀请新用户注册赠送积分活动 1509949
关于科研通互助平台的介绍 1473045