Deep learning near-infrared quality prediction based on multi-level dynamic feature

计算机科学 特征(语言学) 人工智能 模式识别(心理学) 冗余(工程) 共线性 人工神经网络 数据挖掘 数学 几何学 语言学 操作系统 哲学
作者
Zihao Chen,Xiaoli Luan,Fei Liu
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:123: 103450-103450 被引量:1
标识
DOI:10.1016/j.vibspec.2022.103450
摘要

As a fast, efficient, nondestructive, and pollution-free technology, near-infrared spectroscopy (NIRS) has become a practical method for online quality prediction in the process industry. The inherent dynamics of the industrial processes make the NIR spectral data no longer accord with the assumption of independent and identically distributed, which leads to the limitations of the static quality prediction models. In addition, the existing NIRS-based quality prediction methods lack consideration of the possible nonlinear relationship between NIR spectra and quality variables of complex organic samples and the over sensitivity brought by molecular-level detection. This paper proposes a multi-level dynamic feature-based deep learning NIR quality prediction method to solve the above problems. Firstly, short-term feature extraction is mainly based on 2D convolution neural networks (CNNs) to extract short-term dynamic features and eliminate the multi-collinearity and information redundancy with a 2D NIR dynamic spectral matrix input. Thereinto, considering the levels of short-term dynamic features, a combination of dilated CNN and the dense connection is proposed to construct the multi-level features and ensure the continuisty and integrity of the time dimension. Secondly, based on the extracted short-term dynamic features, the long-term dynamic spectral prediction constructed with gate recurrent unit (GRU) is proposed to capture long-term dependence between NIR spectra and predict the NIR spectrum at the next time step. Here, considering the inability of the original GRU to take account of the dynamic feature at all time steps and the possible time lag between industrial laboratory sampling and NIRS detection, temporal attention is utilized to redistribute and fuse the dynamic features of the GRU at all time steps. Finally, a fully connected layer is used to realize the regression from the NIR spectrum of the next moment to the corresponding quality variables. The effectiveness and accuracy of the method are verified by a case of the reaction and distillation process of 2,6 xylenol and corresponding NIR spectral data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无不破哉完成签到,获得积分20
刚刚
Dai WJ发布了新的文献求助10
1秒前
黄大师完成签到 ,获得积分10
1秒前
愤怒的河虾完成签到,获得积分10
1秒前
所所应助XIXI采纳,获得10
1秒前
麻麻发布了新的文献求助10
2秒前
经法发布了新的文献求助10
2秒前
MailkMonk完成签到,获得积分20
2秒前
cici完成签到,获得积分10
3秒前
快乐小文发布了新的文献求助30
3秒前
惜寒完成签到 ,获得积分10
3秒前
3秒前
Grayball应助无奈梦岚采纳,获得10
3秒前
此生不换完成签到 ,获得积分10
4秒前
寻舟者完成签到,获得积分10
5秒前
5秒前
5秒前
橘子屿布丁完成签到,获得积分10
6秒前
6秒前
Zhy完成签到,获得积分10
7秒前
bzy发布了新的文献求助10
7秒前
7秒前
风趣秋白完成签到,获得积分10
7秒前
情怀应助tanmeng77采纳,获得10
7秒前
若空完成签到 ,获得积分10
8秒前
典雅又夏发布了新的文献求助10
8秒前
XIXI完成签到,获得积分10
8秒前
9秒前
夏夏发布了新的文献求助10
9秒前
666完成签到,获得积分10
9秒前
9秒前
tzy完成签到,获得积分10
9秒前
Jackcaosky发布了新的文献求助200
9秒前
tt完成签到 ,获得积分10
10秒前
tennisgirl发布了新的文献求助30
10秒前
DDTT发布了新的文献求助10
11秒前
Li发布了新的文献求助10
12秒前
xiaozhang完成签到,获得积分10
12秒前
科研小民工应助Jinji采纳,获得200
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678