Deep learning near-infrared quality prediction based on multi-level dynamic feature

计算机科学 特征(语言学) 人工智能 模式识别(心理学) 冗余(工程) 共线性 人工神经网络 数据挖掘 数学 几何学 语言学 操作系统 哲学
作者
Zihao Chen,Xiaoli Luan,Fei Liu
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:123: 103450-103450 被引量:1
标识
DOI:10.1016/j.vibspec.2022.103450
摘要

As a fast, efficient, nondestructive, and pollution-free technology, near-infrared spectroscopy (NIRS) has become a practical method for online quality prediction in the process industry. The inherent dynamics of the industrial processes make the NIR spectral data no longer accord with the assumption of independent and identically distributed, which leads to the limitations of the static quality prediction models. In addition, the existing NIRS-based quality prediction methods lack consideration of the possible nonlinear relationship between NIR spectra and quality variables of complex organic samples and the over sensitivity brought by molecular-level detection. This paper proposes a multi-level dynamic feature-based deep learning NIR quality prediction method to solve the above problems. Firstly, short-term feature extraction is mainly based on 2D convolution neural networks (CNNs) to extract short-term dynamic features and eliminate the multi-collinearity and information redundancy with a 2D NIR dynamic spectral matrix input. Thereinto, considering the levels of short-term dynamic features, a combination of dilated CNN and the dense connection is proposed to construct the multi-level features and ensure the continuisty and integrity of the time dimension. Secondly, based on the extracted short-term dynamic features, the long-term dynamic spectral prediction constructed with gate recurrent unit (GRU) is proposed to capture long-term dependence between NIR spectra and predict the NIR spectrum at the next time step. Here, considering the inability of the original GRU to take account of the dynamic feature at all time steps and the possible time lag between industrial laboratory sampling and NIRS detection, temporal attention is utilized to redistribute and fuse the dynamic features of the GRU at all time steps. Finally, a fully connected layer is used to realize the regression from the NIR spectrum of the next moment to the corresponding quality variables. The effectiveness and accuracy of the method are verified by a case of the reaction and distillation process of 2,6 xylenol and corresponding NIR spectral data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小熊完成签到,获得积分10
1秒前
leaolf完成签到,获得积分0
1秒前
科研通AI6应助lz采纳,获得10
1秒前
星辰大海应助吃菜菜采纳,获得10
2秒前
清圆527完成签到,获得积分10
2秒前
JiaY完成签到,获得积分10
4秒前
4秒前
guyuangyy发布了新的文献求助10
4秒前
顺利雪糕完成签到,获得积分10
5秒前
shgook完成签到,获得积分10
5秒前
Ava应助璟晔采纳,获得10
5秒前
6秒前
错过花期的花完成签到 ,获得积分10
6秒前
7秒前
7秒前
1111完成签到,获得积分20
7秒前
斯文败类应助科研通管家采纳,获得10
8秒前
芋圆葡萄完成签到,获得积分10
8秒前
研友_VZG7GZ应助烟波钓徒采纳,获得10
8秒前
Zx_1993应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
8秒前
orixero应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
Zx_1993应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
9秒前
英姑应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
医学耗材完成签到 ,获得积分10
9秒前
SASI完成签到 ,获得积分10
9秒前
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340428
求助须知:如何正确求助?哪些是违规求助? 4476928
关于积分的说明 13933312
捐赠科研通 4372740
什么是DOI,文献DOI怎么找? 2402526
邀请新用户注册赠送积分活动 1395409
关于科研通互助平台的介绍 1367489