配方
成分
计算机科学
变压器
集合(抽象数据类型)
任务(项目管理)
活性成分
人工智能
配对
构思
机器学习
工程类
食品科学
生物信息学
化学
心理学
电气工程
系统工程
电压
程序设计语言
认知科学
物理
超导电性
量子力学
生物
作者
Mogan Gim,Donghee Choi,Kana Maruyama,Jihun Choi,Hajung Kim,Donghyeon Park,Jaewoo Kang
标识
DOI:10.1145/3511808.3557092
摘要
We propose a computational approach for recipe ideation, a downstream task that helps users select and gather ingredients for creating dishes. To perform this task, we developed RecipeMind, a food affinity score prediction model that quantifies the suitability of adding an ingredient to set of other ingredients. We constructed a large-scale dataset containing ingredient co-occurrence based scores to train and evaluate RecipeMind on food affinity score prediction. Deployed in recipe ideation, RecipeMind helps the user expand an initial set of ingredients by suggesting additional ingredients. Experiments and qualitative analysis show RecipeMind's potential in fulfilling its assistive role in cuisine domain.
科研通智能强力驱动
Strongly Powered by AbleSci AI