不透水面
林地
城市化
城市热岛
地理
自然地理学
土地利用
碎片(计算)
城市规划
环境科学
生态学
生物
气象学
作者
Zishu Sun,Zhigang Li,Jialong Zhong
标识
DOI:10.3390/ijerph192013297
摘要
The urbanization process, such as population growth and the expansion of roads, railways, residential areas, and industrial areas, causes severe landscape fragmentation and changes in the surface temperature balance, resulting in the heat island effect. This study used Landsat data to study the impact of landscape patterns on urban heat islands (UHIs) and temporal-spatial change characteristics. In addition, spatial correlation analysis was employed to detect the relationships between land surface temperature (LST) and landscape patterns. The results showed that the impervious surfaces landscape area increased significantly, and the Woodland landscape area increased. However, the bare land, cropland, and water body area decreased. The cohesion of cropland and woodland landscape in the suburb decreased, and there was a high degree of fragmentation. The difference between the contributions of the central city and suburbs to the whole region is narrowing, and the expansion of urban heat islands is shifting from the central city to the suburbs. The percentage of landscape index (PLAND) and the patch cohesion index (COHESION) of woodland, water body, and cropland were negatively correlated with LST. Meanwhile, the PLAND and COHESION of impervious surface and bare land were positively correlated with LST, and the splitting index (SPLIT) was the opposite of the PLAND and COHESION. The fragmentation of impervious surfaces and bare land landscapes reduces the UHI effect. Based on these results, countermeasures to mitigate the heat island effect are proposed. These measures will play an essential role in improving urban ecology and the environmental quality of human settlements.
科研通智能强力驱动
Strongly Powered by AbleSci AI