抑制因子lexA
SOS响应
抑制因子
大肠杆菌
生物
DNA损伤
同源重组
DNA修复
英特因
DNA
细胞生物学
基因
遗传学
转录因子
RNA剪接
核糖核酸
作者
Lorenzo Maso,Filippo Vascon,Monica Chinellato,Frédéric Goormaghtigh,Pierangelo Bellio,Enrica Campagnaro,Laurence Van Melderen,Maria Ruzzene,Els Pardon,Alessandro Angelini,Giuseppe Celenza,Jan Steyaert,Donatella Tondi,Laura Cendron
出处
期刊:Structure
[Elsevier]
日期:2022-10-01
卷期号:30 (11): 1479-1493.e9
被引量:3
标识
DOI:10.1016/j.str.2022.09.004
摘要
Summary
Antimicrobial resistance threatens the eradication of infectious diseases and impairs the efficacy of available therapeutics. The bacterial SOS pathway is a conserved response triggered by genotoxic stresses and represents one of the principal mechanisms that lead to resistance. The RecA recombinase acts as a DNA-damage sensor inducing the autoproteolysis of the transcriptional repressor LexA, thereby derepressing SOS genes that mediate DNA repair, survival to chemotherapy, and hypermutation. The inhibition of such pathway represents a promising strategy for delaying the evolution of antimicrobial resistance. We report the identification, via llama immunization and phage display, of nanobodies that bind LexA with sub-micromolar affinity and block autoproteolysis, repressing SOS response in Escherichia coli. Biophysical characterization of nanobody-LexA complexes revealed that they act by trapping LexA in an inactive conformation and interfering with RecA engagement. Our studies pave the way to the development of new-generation antibiotic adjuvants for the treatment of bacterial infections.
科研通智能强力驱动
Strongly Powered by AbleSci AI