亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MHADTI: predicting drug–target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms

计算机科学 异构网络 嵌入 人工智能 特征(语言学) 机器学习 图嵌入 图形 任务(项目管理) 特征学习 相似性(几何) 数据挖掘 理论计算机科学 图像(数学) 电信 语言学 哲学 无线网络 管理 经济 无线
作者
Zhen Tian,Xiangyu Peng,Haichuan Fang,Wenjie Zhang,Qigen Dai,Yangdong Ye
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (6) 被引量:3
标识
DOI:10.1093/bib/bbac434
摘要

Abstract Motivation Discovering the drug–target interactions (DTIs) is a crucial step in drug development such as the identification of drug side effects and drug repositioning. Since identifying DTIs by web-biological experiments is time-consuming and costly, many computational-based approaches have been proposed and have become an efficient manner to infer the potential interactions. Although extensive effort is invested to solve this task, the prediction accuracy still needs to be improved. More especially, heterogeneous network-based approaches do not fully consider the complex structure and rich semantic information in these heterogeneous networks. Therefore, it is still a challenge to predict DTIs efficiently. Results In this study, we develop a novel method via Multiview heterogeneous information network embedding with Hierarchical Attention mechanisms to discover potential Drug–Target Interactions (MHADTI). Firstly, MHADTI constructs different similarity networks for drugs and targets by utilizing their multisource information. Combined with the known DTI network, three drug–target heterogeneous information networks (HINs) with different views are established. Secondly, MHADTI learns embeddings of drugs and targets from multiview HINs with hierarchical attention mechanisms, which include the node-level, semantic-level and graph-level attentions. Lastly, MHADTI employs the multilayer perceptron to predict DTIs with the learned deep feature representations. The hierarchical attention mechanisms could fully consider the importance of nodes, meta-paths and graphs in learning the feature representations of drugs and targets, which makes their embeddings more comprehensively. Extensive experimental results demonstrate that MHADTI performs better than other SOTA prediction models. Moreover, analysis of prediction results for some interested drugs and targets further indicates that MHADTI has advantages in discovering DTIs. Availability and implementation https://github.com/pxystudy/MHADTI
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33秒前
VDC应助科研通管家采纳,获得30
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
miyavi发布了新的文献求助20
39秒前
哈比完成签到,获得积分10
1分钟前
1分钟前
2分钟前
dolabmu完成签到 ,获得积分10
2分钟前
梦影完成签到 ,获得积分10
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
冷傲的薯片发布了新的文献求助200
3分钟前
3分钟前
Archers完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
俊逸谷云发布了新的文献求助30
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
在水一方应助科研通管家采纳,获得10
4分钟前
无限一凤完成签到 ,获得积分10
4分钟前
西河完成签到 ,获得积分10
4分钟前
俊逸谷云完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
西河发布了新的文献求助10
4分钟前
HEXIAO发布了新的文献求助10
4分钟前
大模型应助瘦瘦采纳,获得10
5分钟前
万能图书馆应助HEXIAO采纳,获得10
5分钟前
5分钟前
Rainbow完成签到 ,获得积分10
5分钟前
无花果应助齐弥采纳,获得30
5分钟前
5分钟前
5分钟前
5分钟前
瘦瘦发布了新的文献求助10
5分钟前
齐弥发布了新的文献求助30
5分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248759
求助须知:如何正确求助?哪些是违规求助? 2892201
关于积分的说明 8270143
捐赠科研通 2560306
什么是DOI,文献DOI怎么找? 1388970
科研通“疑难数据库(出版商)”最低求助积分说明 650927
邀请新用户注册赠送积分活动 627850