电解质
氧化物
电化学
异质结
离子电导率
电导率
无机化学
材料科学
固体氧化物燃料电池
催化作用
化学工程
化学
电极
物理化学
冶金
有机化学
光电子学
工程类
作者
Yuzhao Ouyang,Decai Zhu,Chengjun Zhu,Yingbo Zhang,Jiamei Liu,Jia Xin,Jie Yu,Xinfang Li,Min Yang,Xiaowei Gao
标识
DOI:10.1016/j.ijhydene.2022.09.204
摘要
Ruddlesden-Popper (R–P) structure oxide has been widely used as the electrode material in low temperature solid oxide fuel cells (LT-SOFCs) because of its high catalytic activity and excellent oxygen transport performance, while the studies on this material served as the electrolyte of LT-SOFCs is rarely reported. Herein, the R–P P-type semiconductor Sm1.2Sr0·8Ni0·6Fe0·4O4+δ (SSNF) oxide material was prepared and then used as electrolyte by constructing P–N heterostructure with the N-type semiconductor Sm0.075Nd0.075Ce0·85O2-δ (SNDC) oxide material. Experimental results showed that the developed 5SSNF-5SNDC composite electrolyte exhibited a high ionic conductivity of 0.201 S·cm−1 along with remarkable fuel cell power density of 1056 mW·cm−2 at 550·°C. The constructed P–N heterostructure helps to improve the oxygen ion conductivity and thus the electrochemical properties. These results demonstrate that P–N heterojunctions constructed from oxide materials with highly catalytically active R–P structures exhibit excellent electrolyte performance. This work provides a new perspective for developing advanced electrolytes of LT-SOFCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI