Diagnostic classification of autoantibody repertoires in endocrine ophthalmopathy using an artificial neural network

人工神经网络 人工智能 模式识别(心理学) 自身抗体 线性判别分析 多元统计 多元分析 医学 概率神经网络 计算机科学 机器学习 免疫学 抗体 时滞神经网络
作者
F.H. Grus,Albert J. Augustin,K. Toth-Sagi
出处
期刊:Ocular Immunology and Inflammation [Informa]
卷期号:6 (1): 43-50 被引量:10
标识
DOI:10.1076/ocii.6.1.43.8082
摘要

Purpose: The aim of this study was to classify the human IgG autoantibody repertoire of sera from patients suffering from endocrine ophthalmopathy (EOP) and healthy subjects (CTRL) for diagnostic purposes using the recently developed Megablot technique. This technique allows for the simultaneous and quantitative screening of a large set of antigens and uses multivariate statistical techniques and an artificial neural network. Methods: Sera were tested against Western blots (WBs) of SDS-PAGE preparations of proteins from human extraorbital eye muscle (EOP: n=16; CTRL: n=11). Digital image analysis was performed. The blots were subsequently analyzed by multivariate statistical techniques (analysis of discriminance) and an artificial neural network (probalistic neural network). Results: The sera of both the EOP and CTRL groups showed a complex staining pattern against WBs of SDS-PAGEs from human eye muscle. Using the multivariate statistical technique for classification, all of the known samples and 85% of the unknown samples (not presented during calculation) were assigned to their correct clinical group. Using the artificial neural network as classifier, all of the samples presented during training and 96.3% of the unknown samples (not trained) were assigned correctly. Conclusions: The artificial neural network exceeds the ability of multivariate statistical techniques such as analysis of discriminance to assign unknown samples to their correct predefined group. Thus, the neural network exceeds other methods in generalizing some similarities of blots used for classification. This study reveals that our new technique and its evaluation using a neural network can be used as a helpful diagnostic tool in autoimmune diseases such as endocrine ophthalmopathy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助nature大牛采纳,获得10
1秒前
2秒前
李春霞发布了新的文献求助10
2秒前
风思雅发布了新的文献求助10
3秒前
大胆鞯完成签到 ,获得积分10
3秒前
花凉完成签到,获得积分10
3秒前
阳光发布了新的文献求助30
4秒前
Sherlo给Sherlo的求助进行了留言
4秒前
vn完成签到,获得积分10
4秒前
危志庭应助bioglia采纳,获得10
4秒前
花凉发布了新的文献求助10
5秒前
5秒前
追寻听云应助魔法世界采纳,获得10
5秒前
帅气谷丝发布了新的文献求助10
6秒前
Maple完成签到,获得积分10
6秒前
wanci应助ZHC采纳,获得10
7秒前
7秒前
8秒前
寒冷的断秋应助丸子吖采纳,获得10
8秒前
eiland发布了新的文献求助10
9秒前
loxx发布了新的文献求助10
10秒前
标致的星月应助rxh采纳,获得30
10秒前
lalala发布了新的文献求助10
12秒前
沉默的香氛完成签到 ,获得积分10
12秒前
13秒前
14秒前
14秒前
科研通AI6应助帅气谷丝采纳,获得10
17秒前
机智凡雁发布了新的文献求助10
18秒前
18秒前
ttt关注了科研通微信公众号
18秒前
李健应助Echo采纳,获得10
18秒前
完美世界应助欣慰元蝶采纳,获得10
19秒前
Zz完成签到 ,获得积分10
19秒前
19秒前
fudanlihan发布了新的文献求助10
20秒前
wanci应助淡人采纳,获得10
21秒前
gali关注了科研通微信公众号
23秒前
23秒前
24秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382692
求助须知:如何正确求助?哪些是违规求助? 4505748
关于积分的说明 14022601
捐赠科研通 4415223
什么是DOI,文献DOI怎么找? 2425402
邀请新用户注册赠送积分活动 1418163
关于科研通互助平台的介绍 1396274