Designing aluminum-rich bulk metallic glasses via electronic-structure-guided microalloying

五元 非晶态金属 材料科学 合金 电子结构 无定形固体 铸造 冶金 凝聚态物理 结晶学 医学 化学 物理 替代医学 病理
作者
Naiqin Wu,Liang Zuo,J.Q. Wang,Evan Ma
出处
期刊:Acta Materialia [Elsevier]
卷期号:108: 143-151 被引量:49
标识
DOI:10.1016/j.actamat.2016.02.012
摘要

Aluminum-based bulk metallic glasses (BMGs) are notoriously difficult to make, owing to the relatively low glass forming ability (GFA) of Al-rich alloys. As a result, the search for Al-rich BMGs has resorted to adjusting the alloy composition through minor additions of alloying elements. But such a “microalloying” strategy faces yet another challenge well known to the BMG community: GFA often shows a strong composition dependence but the underlying reason remains poorly understood. Here we tackle these two problems using an electronic-structure-informed approach, in lieu of relying solely on trial and error. Co and La are introduced into the Al–Ni–Y base alloy to partially substitute for Ni and Y, respectively, and their effects on the Fermi level and Brillouin zone size are monitored using spectroscopy experiments. The Co and La contents are tailored to approach a favorable condition that minimizes the electronic density of states at the Fermi level, a recipe to elevate the stability of the amorphous phase. This approach guided us to land an optimal composition in the quinary alloy system, Al86Ni6.75Co2.25Y3.25La1.75, where fully glassy rods reached a record size of 1.5 mm in diameter via copper mold casting. The electronic structure perspective thus appears to be a useful knob to turn to push the envelope of GFA accessible to Al-rich BMGs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
flyfish完成签到,获得积分10
1秒前
36456657应助chen采纳,获得10
1秒前
每念至此完成签到,获得积分10
2秒前
大力黑米完成签到 ,获得积分10
3秒前
123发布了新的文献求助30
3秒前
搜集达人应助gaos采纳,获得10
3秒前
hengy发布了新的文献求助10
3秒前
杳鸢应助Xenia采纳,获得10
4秒前
kekekelili完成签到,获得积分10
5秒前
5秒前
zhonghbush发布了新的文献求助10
6秒前
reck发布了新的文献求助10
6秒前
6秒前
6秒前
kimcandy完成签到,获得积分10
6秒前
华仔应助任品贤采纳,获得10
7秒前
无花果应助急雪回风采纳,获得10
7秒前
9秒前
曾经的灵完成签到,获得积分20
9秒前
bkagyin应助小宇采纳,获得10
9秒前
许之北完成签到 ,获得积分10
9秒前
9秒前
船舵发布了新的文献求助10
9秒前
gaos完成签到,获得积分10
10秒前
念念发布了新的文献求助10
10秒前
An_mie完成签到,获得积分10
10秒前
10秒前
10秒前
Arabella完成签到,获得积分10
11秒前
HEIKU应助追梦人采纳,获得10
11秒前
11秒前
小T儿发布了新的文献求助10
11秒前
852应助woxiangbiye采纳,获得10
11秒前
飞羽完成签到,获得积分10
12秒前
Owen应助cherry采纳,获得10
12秒前
坚定的老六完成签到,获得积分10
12秒前
协和_子鱼完成签到,获得积分0
12秒前
13秒前
Hyde完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672