纳米晶
化学
亚稳态
纤锌矿晶体结构
结晶学
离子
离子交换
晶体结构
纳米颗粒
化学物理
无机化学
六方晶系
纳米技术
有机化学
材料科学
作者
Anna Elizabeth Powell,James M. Hodges,Raymond E. Schaak
摘要
The ability to selectively synthesize one particular polymorph in a solid-state system having multiple crystal structures with the same composition is important for accessing desired properties. Solution-mediated reactions, including anion and cation exchange, that chemically transform colloidal nanoparticles with pre-programmed structural features into targeted products have emerged as a powerful platform for predictably accessing metastable polymorphs. While nanocrystal ion-exchange reactions that retain anion sublattice features are well known, analogous reactions that preserve cation sublattice features are much less common, and guidelines for predictably targeting such sublattice features are not well established. Here, we report that both anion and cation sublattice features—hexagonal close-packed anions and tetrahedrally coordinated cations—can be preserved during cation exchange of roxbyite-type Cu2-xS nanocrystals to selectively produce wurtzite-type CoS and MnS. These polymorphs, which are metastable in bulk systems, form relative to other accessible structures having cubic close-packed anions and/or octahedrally coordinated cations. To facilitate these transformations, the scope of existing nanocrystal cation-exchange reactions was expanded to include 3d transition metal systems that previously have not been investigated in depth.
科研通智能强力驱动
Strongly Powered by AbleSci AI