Accurate prediction of properties of carbon dioxide for carbon capture and sequestration operations

粒子群优化 热导率 人工神经网络 粘度 支持向量机 均方误差 最小二乘支持向量机 航程(航空) 遗传算法 近似误差 决定系数 计算机科学 机器学习 材料科学 算法 数学 统计 复合材料
作者
Mohammad Ali Ahmadi,Tomoaki Kashiwao,Jake Rozyn,Alireza Bahadori
出处
期刊:Petroleum Science and Technology [Informa]
卷期号:34 (1): 97-103 被引量:20
标识
DOI:10.1080/10916466.2015.1107847
摘要

Development of robust predictive models to estimate the transport properties of gases (namely viscosity and thermal conductivity) is of immense help in many engineering applications. This study highlights the application of the artificial neural network (ANN) and least squares support vector machine (LSSVM) modeling approaches to estimate the viscosity and thermal conductivity of CO2. To propose the machine learning methods, a total of 800 data gathered from the literature covering a wide temperature range of 200–1000 K and a wide pressure range of 0.1–100 MPa were used. Particle swarm optimization (PSO) and genetic algorithm (GA) as population-based stochastic search algorithms were applied for training of ANNs and to achieve the optimum LSSVM model variables. For the purpose of predicting viscosity, the PSO-ANN and GA-LSSVM methods yielded the mean absolute error (MAE) and coefficient of determination (R2) values of 1.736 and 0.995 as well as 0.51930 and 0.99934, respectively for the whole data set, while for the purpose of predicting thermal conductivity, the PSO-ANN and GA-LSSVM models yielded the MAE and R2 values of 1.43044 and 0.99704 as well as 0.72140 and 0.99857, respectively for the whole data set. Both methods provide properly capable method for predicting the thermal conductivity and viscosity of CO2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助Jere采纳,获得10
刚刚
太阳雨完成签到,获得积分10
1秒前
丘比特应助ctttt采纳,获得10
1秒前
超级翠应助wangshibing采纳,获得10
1秒前
1秒前
1秒前
Owen应助zqgxiangbiye采纳,获得10
1秒前
科研通AI6应助懒洋洋采纳,获得10
2秒前
凌发完成签到,获得积分10
2秒前
深情安青应助多米采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
领导范儿应助小壮采纳,获得10
2秒前
Hello应助abb采纳,获得10
2秒前
Twonej应助coding采纳,获得400
3秒前
smottom应助ymxq采纳,获得10
3秒前
zzz完成签到,获得积分10
4秒前
4秒前
roooosewang发布了新的文献求助10
4秒前
cdbb发布了新的文献求助10
4秒前
4秒前
优雅砖家完成签到,获得积分10
4秒前
5秒前
ding应助xiaoju采纳,获得10
5秒前
5秒前
YR应助Certainty橙子采纳,获得20
5秒前
哀莫丶哀生完成签到 ,获得积分10
5秒前
太阳雨发布了新的文献求助10
5秒前
5秒前
Hello应助孔明采纳,获得10
6秒前
6秒前
huaming发布了新的文献求助10
6秒前
bkagyin应助syy080837采纳,获得10
7秒前
九bai发布了新的文献求助10
7秒前
7秒前
Vita完成签到,获得积分10
7秒前
wxx完成签到,获得积分10
8秒前
8秒前
田盐盐发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210