清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Accurate prediction of properties of carbon dioxide for carbon capture and sequestration operations

粒子群优化 热导率 人工神经网络 粘度 支持向量机 均方误差 最小二乘支持向量机 航程(航空) 遗传算法 近似误差 决定系数 计算机科学 机器学习 材料科学 算法 数学 统计 复合材料
作者
Mohammad Ali Ahmadi,Tomoaki Kashiwao,Jake Rozyn,Alireza Bahadori
出处
期刊:Petroleum Science and Technology [Informa]
卷期号:34 (1): 97-103 被引量:20
标识
DOI:10.1080/10916466.2015.1107847
摘要

Development of robust predictive models to estimate the transport properties of gases (namely viscosity and thermal conductivity) is of immense help in many engineering applications. This study highlights the application of the artificial neural network (ANN) and least squares support vector machine (LSSVM) modeling approaches to estimate the viscosity and thermal conductivity of CO2. To propose the machine learning methods, a total of 800 data gathered from the literature covering a wide temperature range of 200–1000 K and a wide pressure range of 0.1–100 MPa were used. Particle swarm optimization (PSO) and genetic algorithm (GA) as population-based stochastic search algorithms were applied for training of ANNs and to achieve the optimum LSSVM model variables. For the purpose of predicting viscosity, the PSO-ANN and GA-LSSVM methods yielded the mean absolute error (MAE) and coefficient of determination (R2) values of 1.736 and 0.995 as well as 0.51930 and 0.99934, respectively for the whole data set, while for the purpose of predicting thermal conductivity, the PSO-ANN and GA-LSSVM models yielded the MAE and R2 values of 1.43044 and 0.99704 as well as 0.72140 and 0.99857, respectively for the whole data set. Both methods provide properly capable method for predicting the thermal conductivity and viscosity of CO2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咯咯咯完成签到 ,获得积分10
3秒前
ccl发布了新的文献求助10
33秒前
38秒前
49秒前
Benhnhk21完成签到,获得积分10
58秒前
科研通AI6应助华杰采纳,获得10
1分钟前
1分钟前
Moto_Fang完成签到 ,获得积分10
1分钟前
华杰完成签到,获得积分10
1分钟前
yipmyonphu应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
白华苍松发布了新的文献求助10
2分钟前
ccl完成签到,获得积分10
2分钟前
2分钟前
2分钟前
shhoing应助niko采纳,获得10
2分钟前
领导范儿应助niko采纳,获得10
2分钟前
酷波er应助niko采纳,获得10
2分钟前
科研通AI2S应助niko采纳,获得10
2分钟前
小蘑菇应助niko采纳,获得10
2分钟前
2分钟前
爆米花应助白华苍松采纳,获得10
3分钟前
3分钟前
muriel完成签到,获得积分0
3分钟前
如歌完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
滕皓轩完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
文献搬运工完成签到 ,获得积分0
5分钟前
灶灶完成签到 ,获得积分10
5分钟前
蝎子莱莱xth完成签到,获得积分10
5分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
5分钟前
Square完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
华杰发布了新的文献求助10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534469
求助须知:如何正确求助?哪些是违规求助? 4622450
关于积分的说明 14582630
捐赠科研通 4562656
什么是DOI,文献DOI怎么找? 2500278
邀请新用户注册赠送积分活动 1479820
关于科研通互助平台的介绍 1451022