Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data

森林资源清查 环境科学 遥感 激光雷达 高度计 卫星图像 森林生态学 碳汇 仰角(弹道) 气候变化 碳循环 自然地理学 生态系统 森林经营 地理 地质学 生态学 农林复合经营 海洋学 几何学 数学 生物
作者
Yanjun Su,Qinghua Guo,Baolin Xue,Tianyu Hu,Otto Alvarez,Shengli Tao,Jingyun Fang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:173: 187-199 被引量:240
标识
DOI:10.1016/j.rse.2015.12.002
摘要

The global forest ecosystem, which acts as a large carbon sink, plays an important role in modeling the global carbon balance. An accurate estimation of the total forest carbon stock in the aboveground biomass (AGB) is therefore necessary for improving our understanding of carbon dynamics, especially against the background of global climate change. The forest area of China is among the top five globally. However, because of limitations in forest AGB mapping methods and the availability of ground inventory data, there is still a lack in the nationwide wall-to-wall forest AGB estimation map for China. In this study, we collected over 8000 ground inventory records from published literatures, and developed an AGB mapping method using a combination of these ground inventory data, Geoscience Laser Altimeter System (GLAS)/Ice, Cloud, and Land Elevation Satellite (ICESat) data, optical imagery, climate surfaces, and topographic data. An uncertainty field model was introduced into the forest AGB mapping procedure to minimize the influence of plot location uncertainty. Our nationwide wall-to-wall forest AGB mapping results show that the forest AGB density in China is 120 Mg/ha on average, with a standard deviation of 61 Mg/ha. Evaluation with an independent ground inventory dataset showed that our proposed method can accurately map wall-to-wall forest AGB across a large landscape. The adjusted coefficient of determination (R2) and root-mean-square error between our predicted results and the validation dataset were 0.75 and 42.39 Mg/ha, respectively. This new method and the resulting nationwide wall-to-wall forest AGB map will help to improve the accuracy of carbon dynamic predictions in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助文献小当家采纳,获得10
刚刚
刚刚
玄机完成签到 ,获得积分10
1秒前
zwf123完成签到,获得积分10
1秒前
薛禾完成签到,获得积分10
1秒前
饱满翠绿发布了新的文献求助10
1秒前
搜集达人应助momi采纳,获得10
1秒前
Agoni完成签到,获得积分10
2秒前
香蕉觅云应助正直夜安采纳,获得10
3秒前
3秒前
daxia9527完成签到,获得积分10
3秒前
1230完成签到,获得积分10
3秒前
五月完成签到 ,获得积分10
3秒前
4秒前
JIE发布了新的文献求助10
4秒前
xixo完成签到,获得积分10
4秒前
4秒前
庾幻儿完成签到,获得积分10
4秒前
4秒前
嘿嘿应助love1226采纳,获得10
5秒前
Stella应助Cindy165采纳,获得10
5秒前
serendipity完成签到,获得积分10
5秒前
miao发布了新的文献求助20
5秒前
知否完成签到 ,获得积分0
6秒前
tonyguo发布了新的文献求助10
6秒前
NexusExplorer应助奇异果果采纳,获得10
6秒前
谦让的含海应助易相逢采纳,获得10
6秒前
bkagyin应助maclogos采纳,获得10
6秒前
6秒前
6秒前
7秒前
小Z发布了新的文献求助10
7秒前
acs924完成签到,获得积分10
7秒前
7秒前
zxc完成签到,获得积分10
7秒前
xixo发布了新的文献求助10
7秒前
wxqz发布了新的文献求助30
7秒前
8秒前
平淡天曼完成签到,获得积分10
8秒前
瘦瘦的咖啡豆完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006