Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data

森林资源清查 环境科学 遥感 激光雷达 高度计 卫星图像 森林生态学 碳汇 仰角(弹道) 气候变化 碳循环 自然地理学 生态系统 森林经营 地理 地质学 生态学 农林复合经营 数学 几何学 生物 海洋学
作者
Yanjun Su,Qinghua Guo,Baolin Xue,Tianyu Hu,Otto Alvarez,Shengli Tao,Jingyun Fang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:173: 187-199 被引量:240
标识
DOI:10.1016/j.rse.2015.12.002
摘要

The global forest ecosystem, which acts as a large carbon sink, plays an important role in modeling the global carbon balance. An accurate estimation of the total forest carbon stock in the aboveground biomass (AGB) is therefore necessary for improving our understanding of carbon dynamics, especially against the background of global climate change. The forest area of China is among the top five globally. However, because of limitations in forest AGB mapping methods and the availability of ground inventory data, there is still a lack in the nationwide wall-to-wall forest AGB estimation map for China. In this study, we collected over 8000 ground inventory records from published literatures, and developed an AGB mapping method using a combination of these ground inventory data, Geoscience Laser Altimeter System (GLAS)/Ice, Cloud, and Land Elevation Satellite (ICESat) data, optical imagery, climate surfaces, and topographic data. An uncertainty field model was introduced into the forest AGB mapping procedure to minimize the influence of plot location uncertainty. Our nationwide wall-to-wall forest AGB mapping results show that the forest AGB density in China is 120 Mg/ha on average, with a standard deviation of 61 Mg/ha. Evaluation with an independent ground inventory dataset showed that our proposed method can accurately map wall-to-wall forest AGB across a large landscape. The adjusted coefficient of determination (R2) and root-mean-square error between our predicted results and the validation dataset were 0.75 and 42.39 Mg/ha, respectively. This new method and the resulting nationwide wall-to-wall forest AGB map will help to improve the accuracy of carbon dynamic predictions in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanzi发布了新的文献求助10
刚刚
刚刚
1秒前
orixero应助cc采纳,获得10
1秒前
2秒前
张耘硕发布了新的文献求助10
3秒前
阮晓倩发布了新的文献求助10
3秒前
orixero应助蓝梦一刀采纳,获得10
5秒前
6秒前
小二郎应助ying采纳,获得10
7秒前
7秒前
8秒前
刘六发布了新的文献求助10
8秒前
8秒前
潦草又潦倒完成签到,获得积分20
9秒前
11秒前
天天快乐应助liumenghan采纳,获得10
11秒前
11秒前
luxiaoyu完成签到,获得积分10
11秒前
12秒前
脑洞疼应助DueDue0327采纳,获得10
12秒前
美好驳完成签到 ,获得积分10
12秒前
佑予和安发布了新的文献求助10
12秒前
隐形曼青应助阳子采纳,获得10
13秒前
我的文献完成签到,获得积分10
13秒前
科目三应助滴滴答答采纳,获得10
13秒前
脑洞疼应助GGBoy采纳,获得100
13秒前
14秒前
luxiaoyu发布了新的文献求助10
14秒前
TranYan发布了新的文献求助10
14秒前
石子完成签到 ,获得积分10
15秒前
科研通AI6应助落雨采纳,获得10
16秒前
ZZ完成签到 ,获得积分20
16秒前
16秒前
16秒前
柚屿发布了新的文献求助10
17秒前
英勇的乐蓉完成签到,获得积分20
17秒前
17秒前
MP发布了新的文献求助10
17秒前
江崽完成签到,获得积分20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5272536
求助须知:如何正确求助?哪些是违规求助? 4429759
关于积分的说明 13789897
捐赠科研通 4308272
什么是DOI,文献DOI怎么找? 2364084
邀请新用户注册赠送积分活动 1359709
关于科研通互助平台的介绍 1322750