Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data

森林资源清查 环境科学 遥感 激光雷达 高度计 卫星图像 森林生态学 碳汇 仰角(弹道) 气候变化 碳循环 自然地理学 生态系统 森林经营 地理 地质学 生态学 农林复合经营 海洋学 几何学 数学 生物
作者
Yanjun Su,Qinghua Guo,Baolin Xue,Tianyu Hu,Otto Alvarez,Shengli Tao,Jingyun Fang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:173: 187-199 被引量:230
标识
DOI:10.1016/j.rse.2015.12.002
摘要

The global forest ecosystem, which acts as a large carbon sink, plays an important role in modeling the global carbon balance. An accurate estimation of the total forest carbon stock in the aboveground biomass (AGB) is therefore necessary for improving our understanding of carbon dynamics, especially against the background of global climate change. The forest area of China is among the top five globally. However, because of limitations in forest AGB mapping methods and the availability of ground inventory data, there is still a lack in the nationwide wall-to-wall forest AGB estimation map for China. In this study, we collected over 8000 ground inventory records from published literatures, and developed an AGB mapping method using a combination of these ground inventory data, Geoscience Laser Altimeter System (GLAS)/Ice, Cloud, and Land Elevation Satellite (ICESat) data, optical imagery, climate surfaces, and topographic data. An uncertainty field model was introduced into the forest AGB mapping procedure to minimize the influence of plot location uncertainty. Our nationwide wall-to-wall forest AGB mapping results show that the forest AGB density in China is 120 Mg/ha on average, with a standard deviation of 61 Mg/ha. Evaluation with an independent ground inventory dataset showed that our proposed method can accurately map wall-to-wall forest AGB across a large landscape. The adjusted coefficient of determination (R2) and root-mean-square error between our predicted results and the validation dataset were 0.75 and 42.39 Mg/ha, respectively. This new method and the resulting nationwide wall-to-wall forest AGB map will help to improve the accuracy of carbon dynamic predictions in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
newman完成签到,获得积分10
刚刚
10发布了新的文献求助10
刚刚
小怪兽发布了新的文献求助10
1秒前
雾失楼台完成签到,获得积分10
1秒前
苏杉杉发布了新的文献求助10
2秒前
BINGBING发布了新的文献求助10
2秒前
可爱芷容完成签到,获得积分10
4秒前
落雁发布了新的文献求助10
4秒前
gsgg完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
热血马儿完成签到,获得积分10
6秒前
W1发布了新的文献求助10
7秒前
苹果蜗牛发布了新的文献求助10
7秒前
绕地球3圈完成签到,获得积分10
7秒前
凭栏听雨完成签到,获得积分10
7秒前
SYLH应助dtjvb采纳,获得10
7秒前
酷炫翠桃应助强扭的瓜采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
8秒前
愉快的真应助科研通管家采纳,获得100
8秒前
一裤子灰完成签到,获得积分10
8秒前
yar应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
愉快的真应助科研通管家采纳,获得100
8秒前
慕青应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
9秒前
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
KK发布了新的文献求助10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
KK发布了新的文献求助10
9秒前
卡卡西应助科研通管家采纳,获得30
9秒前
华仔应助科研通管家采纳,获得10
9秒前
yar应助科研通管家采纳,获得10
9秒前
916应助科研通管家采纳,获得10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650