Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data

森林资源清查 环境科学 遥感 激光雷达 高度计 卫星图像 森林生态学 碳汇 仰角(弹道) 气候变化 碳循环 自然地理学 生态系统 森林经营 地理 地质学 生态学 农林复合经营 数学 几何学 生物 海洋学
作者
Yanjun Su,Qinghua Guo,Baolin Xue,Tianyu Hu,Otto Alvarez,Shengli Tao,Jingyun Fang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:173: 187-199 被引量:240
标识
DOI:10.1016/j.rse.2015.12.002
摘要

The global forest ecosystem, which acts as a large carbon sink, plays an important role in modeling the global carbon balance. An accurate estimation of the total forest carbon stock in the aboveground biomass (AGB) is therefore necessary for improving our understanding of carbon dynamics, especially against the background of global climate change. The forest area of China is among the top five globally. However, because of limitations in forest AGB mapping methods and the availability of ground inventory data, there is still a lack in the nationwide wall-to-wall forest AGB estimation map for China. In this study, we collected over 8000 ground inventory records from published literatures, and developed an AGB mapping method using a combination of these ground inventory data, Geoscience Laser Altimeter System (GLAS)/Ice, Cloud, and Land Elevation Satellite (ICESat) data, optical imagery, climate surfaces, and topographic data. An uncertainty field model was introduced into the forest AGB mapping procedure to minimize the influence of plot location uncertainty. Our nationwide wall-to-wall forest AGB mapping results show that the forest AGB density in China is 120 Mg/ha on average, with a standard deviation of 61 Mg/ha. Evaluation with an independent ground inventory dataset showed that our proposed method can accurately map wall-to-wall forest AGB across a large landscape. The adjusted coefficient of determination (R2) and root-mean-square error between our predicted results and the validation dataset were 0.75 and 42.39 Mg/ha, respectively. This new method and the resulting nationwide wall-to-wall forest AGB map will help to improve the accuracy of carbon dynamic predictions in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Alice发布了新的文献求助10
刚刚
幻翎应助曾经不言采纳,获得30
刚刚
刚刚
Aman发布了新的文献求助10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
香菜丸子发布了新的文献求助30
1秒前
1秒前
2秒前
3秒前
3秒前
3秒前
celinewu完成签到,获得积分10
4秒前
Aippan完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
田様应助呆萌太清采纳,获得20
5秒前
上guanguan完成签到,获得积分10
6秒前
哭泣战斗机应助kawaiikid采纳,获得10
6秒前
香蕉君达完成签到,获得积分10
6秒前
6秒前
我行我素完成签到 ,获得积分10
6秒前
不会写论文的小蜜蜂完成签到 ,获得积分10
7秒前
7秒前
7秒前
读书明智发布了新的文献求助10
7秒前
脆脆鲨发布了新的文献求助10
7秒前
7秒前
7秒前
起床了吗发布了新的文献求助10
7秒前
lzj发布了新的文献求助10
7秒前
zsy完成签到,获得积分10
8秒前
8秒前
zyyy发布了新的文献求助10
8秒前
汉堡包应助heiye采纳,获得10
9秒前
9秒前
9秒前
高级丹药师发布了新的文献求助100
9秒前
123完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807