Soil Carbon Storage Response to Temperature: an Hypothesis

土壤碳 碳呼吸 土壤呼吸 碳循环 呼吸 碳纤维 环境科学 环境化学 生态系统 土壤科学 生态学 固碳 二氧化碳 化学 土壤水分 生物 负二氧化碳排放 材料科学 植物 复合数 复合材料
作者
J Thornley
出处
期刊:Annals of Botany [Oxford University Press]
卷期号:87 (5): 591-598 被引量:172
标识
DOI:10.1006/anbo.2001.1372
摘要

Recently, global and some regional observations of soil carbon stocks and turnover times have implied that warming may not deplete soil carbon as much as predicted by ecosystem models. The proposed explanation is that microbial respiration of carbon in 'old' mineral pools is accelerated less by warming than ecosystem models currently assume. Data on the sensitivity of soil respiration to temperature are currently conflicting. An alternative or additional explanation is that warming increases the rate of physico-chemical processes which transfer organic carbon to 'protected', more stable, soil carbon pools. These processes include adsorption reactions, some of which are known to have positive activation energies. Theoretically, physico-chemical reactions may be expected to respond more to warming than enzyme-mediated microbial reactions. A simple analytical model and a complex multi-pool soil carbon model are presented, which separate transfers between pools due to physico-chemical reactions from those associated with microbial respiration. In the short-term, warming depletes soil carbon. But in the long-term, carbon losses by accelerated microbial respiration are offset by increases in carbon input to the soil (net production) and any acceleration of soil physico-chemical 'stabilization' reactions. In the models, if net production rates are increased in response to notional warming by a factor of 1.3, and microbial respiration (in all pools) by 1.5, then soil carbon at equilibrium remains unchanged if physico-chemical reactions are accelerated by a factor of about 2.2 (50% more than microbial reactions). Equilibrium soil carbon increases if physico-chemical reactions are over 50% more sensitive to warming than soil respiration. Copyright 2001 Annals of Botany Company
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆沙包小团子完成签到 ,获得积分10
1秒前
呆呆发布了新的文献求助80
1秒前
杨新宇完成签到,获得积分10
2秒前
3秒前
陈海明发布了新的文献求助10
3秒前
Lu完成签到,获得积分10
4秒前
粗心的菀完成签到 ,获得积分10
4秒前
自由月亮完成签到 ,获得积分10
5秒前
千百度完成签到,获得积分10
8秒前
Xiaoxiannv完成签到,获得积分10
8秒前
陶治发布了新的文献求助10
9秒前
10秒前
NexusExplorer应助过时的砖头采纳,获得10
10秒前
Cai发布了新的文献求助10
11秒前
马天垚发布了新的文献求助10
12秒前
陈海明完成签到,获得积分10
12秒前
隐形曼青应助三杠采纳,获得10
12秒前
tianzml0应助杨新宇采纳,获得10
12秒前
13秒前
认真科研发布了新的文献求助10
13秒前
14秒前
14秒前
nieinei发布了新的文献求助10
14秒前
perth完成签到,获得积分10
15秒前
Lz完成签到,获得积分10
18秒前
rtaxa完成签到,获得积分0
18秒前
知性的菠萝完成签到,获得积分10
18秒前
19秒前
Jeffery426发布了新的文献求助10
20秒前
21秒前
YYF完成签到,获得积分10
23秒前
认真科研完成签到,获得积分10
23秒前
luckygirl发布了新的文献求助10
24秒前
然然发布了新的文献求助10
25秒前
26秒前
26秒前
27秒前
翊然甜周完成签到,获得积分10
28秒前
28秒前
siwen完成签到,获得积分10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162599
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900687
捐赠科研通 2473052
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631452
版权声明 602175