Artificial intelligence in the diagnosis and detection of heart failure: the past, present, and future

医学 心力衰竭 人工智能 逻辑回归 机器学习 疾病 人工神经网络 重症监护医学 心脏病学 内科学 计算机科学
作者
Farah Yasmin,Syed Muhammad Ismail Shah,Ayesha Naeem,Syed Muhammad Shujauddin,Adina Jabeen,Sana Kazmi,Sarush Ahmed Siddiqui,Pankaj Kumar,Shiza Salman,Syed Adeel Hassan,Chandrashekhar Dasari,Ali Sanaullah Choudhry,Ahmad Mustafa,Sanchit Chawla,Hassan Mehmood Lak
出处
期刊:Reviews in Cardiovascular Medicine [IMR Press]
卷期号:22 (4): 1095-1095 被引量:43
标识
DOI:10.31083/j.rcm2204121
摘要

Artificial Intelligence (AI) performs human intelligence-dependant tasks using tools such as Machine Learning, and its subtype Deep Learning. AI has incorporated itself in the field of cardiovascular medicine, and increasingly employed to revolutionize diagnosis, treatment, risk prediction, clinical care, and drug discovery. Heart failure has a high prevalence, and mortality rate following hospitalization being 10.4% at 30-days, 22% at 1-year, and 42.3% at 5-years. Early detection of heart failure is of vital importance in shaping the medical, and surgical interventions specific to HF patients. This has been accomplished with the advent of Neural Network (NN) model, the accuracy of which has proven to be 85%. AI can be of tremendous help in analyzing raw image data from cardiac imaging techniques (such as echocardiography, computed tomography, cardiac MRI amongst others) and electrocardiogram recordings through incorporation of an algorithm. The use of decision trees by Rough Sets (RS), and logistic regression (LR) methods utilized to construct decision-making model to diagnose congestive heart failure, and role of AI in early detection of future mortality and destabilization episodes has played a vital role in optimizing cardiovascular disease outcomes. The review highlights the major achievements of AI in recent years that has radically changed nearly all areas of HF prevention, diagnosis, and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助小董不懂采纳,获得10
1秒前
1秒前
常常发布了新的文献求助10
1秒前
烟花应助王彬采纳,获得10
1秒前
CrazyLion完成签到,获得积分10
1秒前
1秒前
殷昭慧发布了新的文献求助10
2秒前
2秒前
英勇电脑完成签到,获得积分10
2秒前
牛洋洋完成签到,获得积分10
3秒前
zyp完成签到,获得积分10
3秒前
www发布了新的文献求助10
3秒前
TAO发布了新的文献求助10
3秒前
3秒前
4秒前
上好佳发布了新的文献求助10
4秒前
biubiufan发布了新的文献求助10
5秒前
5秒前
我爱Chem完成签到 ,获得积分10
5秒前
5秒前
清脆的惜雪完成签到,获得积分20
5秒前
黄大师完成签到,获得积分10
6秒前
7秒前
8秒前
兰陵萧笑声完成签到,获得积分10
8秒前
Owen应助鑫鑫努力学习采纳,获得10
8秒前
8秒前
8秒前
刻苦的皮卡丘完成签到,获得积分10
8秒前
柔弱紊发布了新的文献求助10
9秒前
领导范儿应助殷昭慧采纳,获得10
9秒前
9秒前
shaofeng发布了新的文献求助10
9秒前
Hello应助yue采纳,获得10
9秒前
蓝橙完成签到,获得积分10
9秒前
神勇的紫丝完成签到,获得积分20
10秒前
端庄代秋发布了新的文献求助10
10秒前
研友_nElWWL发布了新的文献求助10
10秒前
科研通AI2S应助j736999565采纳,获得10
10秒前
芯茶完成签到 ,获得积分10
10秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123270
求助须知:如何正确求助?哪些是违规求助? 2773756
关于积分的说明 7719288
捐赠科研通 2429428
什么是DOI,文献DOI怎么找? 1290306
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251