On Outsourcing Artificial Neural Network Learning of Privacy-Sensitive Medical Data to the Cloud

云计算 外包 人工神经网络 计算机科学 信息隐私 人工智能 计算机安全 业务 操作系统 营销
作者
Dimitrios Melissourgos,Hanzhi Gao,Chaoyi Ma,Shigang Chen,Samuel S. Wu
标识
DOI:10.1109/ictai52525.2021.00062
摘要

Machine learning and artificial neural networks (ANNs) have been at the forefront of medical research in the last few years. It is well known that ANNs benefit from big data and the collection of the data is often decentralized, meaning that it is stored in different computer systems. There is a practical need to bring the distributed data together with the purpose of training a more accurate ANN. However, the privacy concern prevents medical institutes from sharing patient data freely. Federated learning and multi-party computation have been proposed to address this concern. However, they require the medical data collectors to participate in the deep-learning computations of the data users, which is inconvenient or even infeasible in practice. In this paper, we propose to use matrix masking for privacy protection of patient data. It allows the data collectors to outsource privacy-sensitive medical data to the cloud in a masked form, and allows the data users to outsource deep learning to the cloud as well, where the ANN models can be trained directly from the masked data. Our experimental results on deep-learning models for diagnosis of Alzheimer's disease and Parkinson's disease show that the diagnosis accuracy of the models trained from the masked data is similar to that of the models from the original patient data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ppat5012完成签到 ,获得积分10
刚刚
1秒前
哈哈hehe完成签到,获得积分10
2秒前
kiyo_v发布了新的文献求助10
2秒前
2秒前
kilig应助GL采纳,获得10
3秒前
3秒前
传奇3应助dm11采纳,获得10
3秒前
3秒前
3秒前
wandaiji完成签到,获得积分10
4秒前
neil发布了新的文献求助10
4秒前
SMG完成签到 ,获得积分10
5秒前
iNk举报调研昵称求助涉嫌违规
5秒前
ZJU完成签到,获得积分10
5秒前
温文尔雅完成签到,获得积分10
5秒前
凌寻冬发布了新的文献求助10
6秒前
温水煮青蛙完成签到 ,获得积分10
6秒前
啊鲤完成签到,获得积分10
6秒前
歪歪象完成签到,获得积分10
6秒前
超级大猩猩完成签到,获得积分10
7秒前
小齐爱科研完成签到,获得积分10
7秒前
yxy完成签到,获得积分10
7秒前
nieanicole完成签到,获得积分10
7秒前
xLi完成签到,获得积分10
8秒前
ANESTHESIA_XY完成签到 ,获得积分10
8秒前
嚭嚭发布了新的文献求助10
8秒前
上杉绘梨衣完成签到,获得积分10
8秒前
田様应助范德萨范德萨采纳,获得10
8秒前
9秒前
可以的完成签到,获得积分10
9秒前
10秒前
wyw123完成签到,获得积分10
11秒前
张惠完成签到,获得积分10
11秒前
1459完成签到,获得积分10
12秒前
cc完成签到,获得积分10
12秒前
13秒前
yangyang完成签到,获得积分10
13秒前
猛男航完成签到,获得积分10
13秒前
waiho完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526829
求助须知:如何正确求助?哪些是违规求助? 3107085
关于积分的说明 9283016
捐赠科研通 2804873
什么是DOI,文献DOI怎么找? 1539595
邀请新用户注册赠送积分活动 716634
科研通“疑难数据库(出版商)”最低求助积分说明 709597