In animals, the gut microbiome is vital to growth, and changes in the composition of these microbial communities may affect growth and adaptability to the environment. Temperature is another important factor that influences the healthy growth of animals. To date, the mechanism by which juvenile European seabass (Dicentrarchus labrax) and their symbiotic flora adapt to changes in environmental temperature is not well understood. Therefore, we evaluated the effect of temperature on the gut microbiota and metabolism of European seabass juveniles. We used 16S rRNA gene amplicon sequencing and non-targeted liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based metabolomics to study the gut microbes of European seabass after 60 days of rearing of water temperature at 10 °C (T1), 15 °C (T2) and 20 °C (T3). At the phylum level, the abundance of the gut microbiota did not differ significantly among the three groups after 60 days of cultivation. At the genus level, however, the abundance of Faecalibacterium, Filifactor, Butyricicoccus, and Erysipelotrichaceae UCG-006 in the intestines differed significantly among the temperature groups. Compared with T2, the relative abundance of Filifactor in T1 was significantly increased, while Faecalibacterium was significantly decreased, while the relative abundance of Butyricicoccus and Erysipelotrichaceae UCG-006 in T3 was significantly increased. The LC-MS/MS analysis revealed 107 metabolites in the 10 °C group and 68 metabolites in the 20 °C group that differed significantly from those in the intestines of fish in the 15 °C control group. These metabolites are closely related to several metabolic pathways, including amino acid metabolism, glucose and lipid metabolism, and the tricarboxylic acid cycle. Correlation analysis of the Intestine microbiota, metabolic pathways, and metabolites identified metabolic pathways and metabolites that were strongly related to the observed significant differences in the microbiome among the temperature groups. These results show that temperature can induce significant changes in the gut microbiota and metabolism of European seabass juveniles, and that significant changes in metabolites may be mediated through the interaction of the microbiome and metabolic pathways.