InsectCV: A system for insect detection in the lab from trap images

人工智能 存水弯(水管) 计算机科学 背景(考古学) 推论 领域(数学) 人口 机器学习 集合(抽象数据类型) 灰度 模式识别(心理学) 计算机视觉 图像(数学) 生物 数学 环境科学 人口学 古生物学 社会学 环境工程 程序设计语言 纯数学
作者
Telmo De Cesaro Júnior,Rafael Rieder,Jéssica Regina Di Domênico,D. Lau
出处
期刊:Ecological Informatics [Elsevier]
卷期号:67: 101516-101516 被引量:9
标识
DOI:10.1016/j.ecoinf.2021.101516
摘要

Advances in artificial intelligence, computer vision, and high-performance computing have enabled the creation of efficient solutions to monitor pests and identify plant diseases. In this context, we present InsectCV, a system for automatic insect detection in the lab from scanned trap images. This study considered the use of Moericke-type traps to capture insects in outdoor environments. Each sample can contain hundreds of insects of interest, such as aphids, parasitoids, thrips, and flies. The presence of debris, superimposed objects, and insects in varied poses is also common. To develop this solution, we used a set of 209 grayscale images containing 17,908 labeled insects. We applied the Mask R-CNN method to generate the model and created three web services for the image inference. The model training contemplated transfer learning and data augmentation techniques. This approach defined two new parameters to adjust the ratio of false positive by class, and change the lengths of the anchor side of the Region Proposal Network, improving the accuracy in the detection of small objects. The model validation used a total of 580 images obtained from field exposed traps located at Coxilha, and Passo Fundo, north of Rio Grande do Sul State, during wheat crop season in 2019 and 2020. Compared to manual counting, the coefficients of determination (R2 = 0.81 for aphids and R2 = 0.78 for parasitoids) show a good-fitting model to identify the fluctuation of population levels for these insects, presenting tiny deviations of the growth curve in the initial phases, and in the maintenance of the curve shape. In samples with hundreds of insects and debris that generate more connections or overlaps, model performance was affected due to the increase in false negatives. Comparative tests between InsectCV and manual counting performed by a specialist suggest that the system is sufficiently accurate to guide warning systems for integrated pest management of aphids. We also discussed the implications of adopting this tool and the gaps that require further development.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHW发布了新的文献求助10
1秒前
熊博士完成签到 ,获得积分10
2秒前
夜未央完成签到 ,获得积分10
3秒前
上官以山发布了新的文献求助10
5秒前
梅特卡夫完成签到,获得积分10
7秒前
静静在学呢完成签到,获得积分10
10秒前
10秒前
HHW完成签到,获得积分10
12秒前
加油杨完成签到 ,获得积分10
13秒前
111完成签到 ,获得积分10
13秒前
14秒前
AE86完成签到,获得积分10
16秒前
CC_Galaxy完成签到 ,获得积分10
16秒前
jeffrey完成签到,获得积分0
16秒前
郭帅完成签到,获得积分10
19秒前
香蕉海白发布了新的文献求助10
19秒前
看满天星河完成签到 ,获得积分10
21秒前
郑振哲完成签到 ,获得积分10
27秒前
笑林完成签到 ,获得积分10
28秒前
求知小生完成签到 ,获得积分10
30秒前
38秒前
40秒前
LiuZhaoYuan完成签到,获得积分10
44秒前
45秒前
杨一完成签到 ,获得积分0
46秒前
三木完成签到 ,获得积分10
46秒前
一米阳光发布了新的文献求助10
47秒前
舒心的雍发布了新的文献求助10
49秒前
glanceofwind完成签到 ,获得积分10
50秒前
我世界第一快应助EMMA采纳,获得20
50秒前
典雅思真完成签到 ,获得积分10
52秒前
Ziang发布了新的文献求助10
55秒前
宇文雨文完成签到 ,获得积分10
1分钟前
1分钟前
舒心的雍完成签到,获得积分10
1分钟前
benlaron完成签到 ,获得积分10
1分钟前
贤惠的早晨完成签到 ,获得积分10
1分钟前
1分钟前
Karl完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866612
求助须知:如何正确求助?哪些是违规求助? 6424931
关于积分的说明 15654690
捐赠科研通 4981530
什么是DOI,文献DOI怎么找? 2686673
邀请新用户注册赠送积分活动 1629485
关于科研通互助平台的介绍 1587488