InsectCV: A system for insect detection in the lab from trap images

人工智能 存水弯(水管) 计算机科学 背景(考古学) 推论 领域(数学) 人口 机器学习 集合(抽象数据类型) 灰度 模式识别(心理学) 计算机视觉 图像(数学) 生物 数学 环境科学 人口学 古生物学 社会学 环境工程 程序设计语言 纯数学
作者
Telmo De Cesaro Júnior,Rafael Rieder,Jéssica Regina Di Domênico,D. Lau
出处
期刊:Ecological Informatics [Elsevier]
卷期号:67: 101516-101516 被引量:9
标识
DOI:10.1016/j.ecoinf.2021.101516
摘要

Advances in artificial intelligence, computer vision, and high-performance computing have enabled the creation of efficient solutions to monitor pests and identify plant diseases. In this context, we present InsectCV, a system for automatic insect detection in the lab from scanned trap images. This study considered the use of Moericke-type traps to capture insects in outdoor environments. Each sample can contain hundreds of insects of interest, such as aphids, parasitoids, thrips, and flies. The presence of debris, superimposed objects, and insects in varied poses is also common. To develop this solution, we used a set of 209 grayscale images containing 17,908 labeled insects. We applied the Mask R-CNN method to generate the model and created three web services for the image inference. The model training contemplated transfer learning and data augmentation techniques. This approach defined two new parameters to adjust the ratio of false positive by class, and change the lengths of the anchor side of the Region Proposal Network, improving the accuracy in the detection of small objects. The model validation used a total of 580 images obtained from field exposed traps located at Coxilha, and Passo Fundo, north of Rio Grande do Sul State, during wheat crop season in 2019 and 2020. Compared to manual counting, the coefficients of determination (R2 = 0.81 for aphids and R2 = 0.78 for parasitoids) show a good-fitting model to identify the fluctuation of population levels for these insects, presenting tiny deviations of the growth curve in the initial phases, and in the maintenance of the curve shape. In samples with hundreds of insects and debris that generate more connections or overlaps, model performance was affected due to the increase in false negatives. Comparative tests between InsectCV and manual counting performed by a specialist suggest that the system is sufficiently accurate to guide warning systems for integrated pest management of aphids. We also discussed the implications of adopting this tool and the gaps that require further development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yzy发布了新的文献求助10
刚刚
谨言完成签到 ,获得积分10
1秒前
1秒前
莎莎发布了新的文献求助10
4秒前
chenyl发布了新的文献求助10
4秒前
stories应助泡泡糖采纳,获得10
7秒前
8秒前
歪歪象完成签到,获得积分10
8秒前
Peng完成签到 ,获得积分10
8秒前
科研通AI2S应助Shelley采纳,获得10
8秒前
huangr123完成签到,获得积分10
9秒前
凉皮亮晶晶完成签到,获得积分10
10秒前
doxiao发布了新的文献求助10
10秒前
hzl完成签到,获得积分10
10秒前
科研小白完成签到,获得积分10
11秒前
上官若男应助怀忑采纳,获得10
11秒前
huangr123发布了新的文献求助10
12秒前
12秒前
PFD000完成签到,获得积分10
12秒前
Shelley完成签到,获得积分20
14秒前
苹果南烟完成签到,获得积分10
14秒前
魔幻的盼芙完成签到,获得积分10
15秒前
CodeCraft应助裴裴裴采纳,获得10
15秒前
16秒前
16秒前
香蕉觅云应助chenyl采纳,获得10
17秒前
李健应助chenyl采纳,获得10
17秒前
鲸鱼姐姐发布了新的文献求助20
17秒前
serpant发布了新的文献求助10
17秒前
17秒前
Goodenough完成签到 ,获得积分10
17秒前
点酒成诗完成签到,获得积分10
18秒前
風之歌完成签到,获得积分10
18秒前
doxiao完成签到,获得积分10
20秒前
干大事的小喽啰完成签到,获得积分10
21秒前
文艺初雪完成签到,获得积分10
21秒前
怀忑发布了新的文献求助10
22秒前
gao完成签到 ,获得积分10
23秒前
23秒前
可爱的函函应助serpant采纳,获得10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3357312
求助须知:如何正确求助?哪些是违规求助? 2980824
关于积分的说明 8696311
捐赠科研通 2662479
什么是DOI,文献DOI怎么找? 1457877
科研通“疑难数据库(出版商)”最低求助积分说明 674902
邀请新用户注册赠送积分活动 665938