Diagnosis of Suspected Scaphoid Fractures.

医学 舟状骨骨折 骨不连 射线照相术 人工智能 机器学习
作者
P. H. C. Stirling,Jason Strelzow,Job N Doornberg,Timothy O White,Margaret M. McQueen,Andrew D. Duckworth
出处
期刊:Jbjs reviews [Journal of Bone and Joint Surgery]
卷期号:9 (12)
标识
DOI:10.2106/jbjs.rvw.20.00247
摘要

Suspected scaphoid fractures are a diagnostic and therapeutic challenge despite the advances in knowledge regarding these injuries and imaging techniques. The risks and restrictions of routine immobilization as well as the restriction of activities in a young and active population must be weighed against the risks of nonunion that are associated with a missed fracture.The prevalence of true fractures among suspected fractures is low. This greatly reduces the statistical probability that a positive diagnostic test will correspond with a true fracture, reducing the positive predictive value of an investigation.There is no consensus reference standard for a true fracture; therefore, alternative statistical methods for calculating sensitivity, specificity, and positive and negative predictive values are required.Clinical prediction rules that incorporate a set of demographic and clinical factors may allow stratification of secondary imaging, which, in turn, could increase the pretest probability of a scaphoid fracture and improve the diagnostic performance of the sophisticated radiographic investigations that are available.Machine-learning-derived probability calculators may augment risk stratification and can improve through retraining, although these theoretical benefits need further prospective evaluation.Convolutional neural networks (CNNs) are a form of artificial intelligence that have demonstrated great promise in the recognition of scaphoid fractures on radiographs. However, in the more challenging diagnostic scenario of a suspected or so-called "clinical" scaphoid fracture, CNNs have not yet proven superior to a diagnosis that has been made by an experienced surgeon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助九九采纳,获得10
1秒前
万能图书馆应助西贝采纳,获得10
1秒前
1秒前
炫酷完成签到,获得积分10
1秒前
小星云发布了新的文献求助10
1秒前
2秒前
xip完成签到,获得积分10
2秒前
2秒前
wk0635发布了新的文献求助10
2秒前
wks666666发布了新的文献求助10
2秒前
4秒前
4秒前
青木香完成签到,获得积分10
4秒前
骏驰天下发布了新的文献求助10
4秒前
霸气若菱发布了新的文献求助10
5秒前
haipronl发布了新的文献求助10
5秒前
Carey发布了新的文献求助10
5秒前
5秒前
6秒前
隐形曼青应助MWY采纳,获得10
7秒前
7秒前
7秒前
核动力牛马完成签到,获得积分10
8秒前
Bonnienuit发布了新的文献求助10
9秒前
RNAPW发布了新的文献求助10
9秒前
所所应助sing采纳,获得10
10秒前
完美夜云发布了新的文献求助20
10秒前
Lawrence发布了新的文献求助10
11秒前
大个应助慕课魔芋采纳,获得10
12秒前
霸气若菱完成签到,获得积分20
12秒前
13秒前
hibiwi完成签到,获得积分10
13秒前
13秒前
曙光发布了新的文献求助30
13秒前
13秒前
13秒前
义气的行天完成签到,获得积分10
13秒前
16秒前
RNAPW完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561075
求助须知:如何正确求助?哪些是违规求助? 3134842
关于积分的说明 9409879
捐赠科研通 2835055
什么是DOI,文献DOI怎么找? 1558395
邀请新用户注册赠送积分活动 728129
科研通“疑难数据库(出版商)”最低求助积分说明 716696