已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diagnosis of Suspected Scaphoid Fractures

医学 舟状骨骨折 骨不连 射线照相术 人工智能 放射科 外科 计算机科学
作者
Paul Stirling,Jason Strelzow,Job N. Doornberg,Timothy O. White,Margaret M. McQueen,Andrew D. Duckworth
出处
期刊:Jbjs reviews [Journal of Bone and Joint Surgery]
卷期号:9 (12) 被引量:13
标识
DOI:10.2106/jbjs.rvw.20.00247
摘要

Suspected scaphoid fractures are a diagnostic and therapeutic challenge despite the advances in knowledge regarding these injuries and imaging techniques. The risks and restrictions of routine immobilization as well as the restriction of activities in a young and active population must be weighed against the risks of nonunion that are associated with a missed fracture.The prevalence of true fractures among suspected fractures is low. This greatly reduces the statistical probability that a positive diagnostic test will correspond with a true fracture, reducing the positive predictive value of an investigation.There is no consensus reference standard for a true fracture; therefore, alternative statistical methods for calculating sensitivity, specificity, and positive and negative predictive values are required.Clinical prediction rules that incorporate a set of demographic and clinical factors may allow stratification of secondary imaging, which, in turn, could increase the pretest probability of a scaphoid fracture and improve the diagnostic performance of the sophisticated radiographic investigations that are available.Machine-learning-derived probability calculators may augment risk stratification and can improve through retraining, although these theoretical benefits need further prospective evaluation.Convolutional neural networks (CNNs) are a form of artificial intelligence that have demonstrated great promise in the recognition of scaphoid fractures on radiographs. However, in the more challenging diagnostic scenario of a suspected or so-called "clinical" scaphoid fracture, CNNs have not yet proven superior to a diagnosis that has been made by an experienced surgeon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉紫菜发布了新的文献求助30
1秒前
1秒前
2秒前
辣椒完成签到 ,获得积分10
4秒前
leo7发布了新的文献求助10
4秒前
苏子饿了完成签到 ,获得积分10
5秒前
U87发布了新的文献求助80
7秒前
橙子发布了新的文献求助10
10秒前
我是老大应助佳怡采纳,获得10
10秒前
jingutaimi完成签到,获得积分10
11秒前
12秒前
寒梅恋雪完成签到 ,获得积分10
12秒前
Jasper应助leo7采纳,获得10
15秒前
清爽冬莲完成签到 ,获得积分0
16秒前
16秒前
一只小喵完成签到,获得积分10
18秒前
笑点低完成签到 ,获得积分10
18秒前
18秒前
小璐小璐要幸福完成签到 ,获得积分10
19秒前
来学习发布了新的文献求助10
19秒前
橙子完成签到,获得积分10
22秒前
亦hcy发布了新的文献求助10
22秒前
24秒前
Doctor完成签到 ,获得积分10
26秒前
DaWn完成签到 ,获得积分10
28秒前
29秒前
好久不见完成签到,获得积分10
31秒前
may完成签到 ,获得积分10
31秒前
ww发布了新的文献求助10
35秒前
35秒前
matrixu完成签到,获得积分10
37秒前
37秒前
wang_dong完成签到,获得积分10
38秒前
啊哈哈哈哈哈完成签到 ,获得积分10
41秒前
ww完成签到,获得积分10
41秒前
42秒前
完美世界应助科研通管家采纳,获得10
43秒前
乐乐应助科研通管家采纳,获得10
43秒前
英俊的铭应助科研通管家采纳,获得10
43秒前
NexusExplorer应助科研通管家采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655