Characterization of the loss of grip condition in the Strain-Based Intelligent Tire at severe maneuvers

卡西姆 接触片 打滑(空气动力学) 轮胎平衡 汽车工程 车辆动力学 滑移率 工程类 结构工程 材料科学 航空航天工程 复合材料 天然橡胶 制动器
作者
Ma Fernanda Mendoza-Petit,Daniel García-Pozuelo,Vicente Díaz,María Garrosa
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:168: 108586-108586 被引量:18
标识
DOI:10.1016/j.ymssp.2021.108586
摘要

The early detection of the instantaneous tire–road condition enables the control systems to react against the risk of the vehicle’s loss of control. This situation usually occurs when the phenomena of stick–slip is not present in the tire–road interaction yielding the full slip of the tire (the whole contact patch is gliding). The relation between the friction force and the vertical load of the tire can be used as an indicator of this loss of grip when it is higher than the maximum capacity of friction used for the surfaces in contact. Nonetheless, this limit of friction is currently unknown. This study proposes the development of the tire as an active sensor able to provide all this information. Previous studies have shown that the Strain-based Intelligent Tire enables the monitoring of the forces in the tire–road interaction, the wheel load, the effective radius, the contact length, and the wheel velocity in the contact patch. These parameters affect the tire–road friction characterization. Therefore, it is proposed the integration of the LuGre model with the achievements of the Strain-Based Intelligent Tire in order to estimate the adherence limit. To show the effectiveness of the methodology proposed it is used the CarSim™ simulation software. The validation process is carried out monitoring the limit of adherence with a set of vehicle’s severe maneuvers, where the dynamic behavior of the vehicle highlights its influence in the operational condition of the tire in order to expose the wheels to full slip.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧汉堡完成签到 ,获得积分10
刚刚
SciGPT应助幸福胡萝卜采纳,获得10
1秒前
积极晓兰完成签到,获得积分10
1秒前
1秒前
离子电池完成签到,获得积分10
1秒前
小熊饼干完成签到,获得积分10
1秒前
Ryuichi完成签到 ,获得积分10
2秒前
冷静的平安完成签到,获得积分20
2秒前
周士乐完成签到,获得积分10
2秒前
juan完成签到,获得积分10
3秒前
cheeselemon182完成签到,获得积分10
3秒前
英勇凝旋完成签到,获得积分10
4秒前
HopeStar发布了新的文献求助10
4秒前
4秒前
石幻枫完成签到 ,获得积分10
5秒前
生动盼秋发布了新的文献求助10
5秒前
韭黄发布了新的文献求助10
5秒前
Eliauk完成签到,获得积分10
6秒前
小野狼完成签到,获得积分10
6秒前
威武诺言完成签到,获得积分10
6秒前
fengye发布了新的文献求助10
6秒前
李东东完成签到 ,获得积分10
6秒前
Zn应助hulin_zjxu采纳,获得10
6秒前
海鸥海鸥发布了新的文献求助50
7秒前
小乔要努力变强完成签到,获得积分10
7秒前
YANG完成签到 ,获得积分10
7秒前
7秒前
在水一方应助马保国123采纳,获得10
7秒前
Jovid完成签到,获得积分10
8秒前
建成完成签到,获得积分10
8秒前
爆米花应助落落采纳,获得10
8秒前
852应助liu123479采纳,获得20
9秒前
9秒前
无情念之发布了新的文献求助10
9秒前
lilac应助Rocky采纳,获得10
9秒前
9秒前
深情安青应助OYE采纳,获得10
10秒前
10秒前
李爱国应助热情的阿猫桑采纳,获得10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759