Propensity score-integrated Bayesian prior approaches for augmented control designs: a simulation study

倾向得分匹配 先验概率 杠杆(统计) 贝叶斯概率 加权 计算机科学 随机对照试验 统计 计量经济学 机器学习 医学 人工智能 数学 外科 放射科
作者
Xi Wang,Leah Suttner,Thomas Jemielita,Xiaoyun Li
出处
期刊:Journal of Biopharmaceutical Statistics [Informa]
卷期号:32 (1): 170-190 被引量:12
标识
DOI:10.1080/10543406.2021.2011743
摘要

Drug development can be costly, and the availability of clinical trial participants may be limited either due to the disease setting (rare or pediatric diseases) or due to many sponsors evaluating multiple drugs or combinations in the same patient population. To maximize resource utilization, sponsors may leverage patient-level control data from historical trials. However, in a study with no control arm, it is impossible to evaluate if the historical controls are an appropriate comparator for the current study. Here, instead of conducting a single-arm trial and relying solely on historical controls, we evaluate the situation where a minimal number of patients are enrolled into a control arm, which is augmented by borrowing historical control data. Propensity score (PS) methods are commonly used to minimize bias for non-randomized data. In addition, Bayesian information borrowing with PS adjustments has been proposed when it may not be reasonable to include all available historical data. This paper proposes using PS adjustment integrated with Bayesian commensurate priors to adaptively borrow information. We then evaluate the performance of different PS adjustment methods and different Bayesian priors for augmented control using simulation studies to help inform the design of future trials. In general, we find that propensity weighting or matching combined with the commensurate prior yield reasonable statistical properties across a range of scenarios. Finally, our proposed methods are applied to a real trial with a binary outcome.Abbreviations: PS: propensity score; IPTW: inverse probability of treatment weighting; ATT: average treatment effect on those who received treatment; RCT: randomized controlled trial; CDD: covariate distribution difference; ESS: effective sample size
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
建设发布了新的文献求助10
1秒前
充电宝应助小小小小璿采纳,获得10
3秒前
4秒前
4秒前
7秒前
8秒前
彭于晏应助cjh采纳,获得10
8秒前
寻觅完成签到,获得积分20
9秒前
朝阳发布了新的文献求助10
11秒前
饱满含玉发布了新的文献求助10
12秒前
bkagyin应助建设采纳,获得10
12秒前
英俊的咖啡豆完成签到 ,获得积分10
12秒前
12秒前
小七2022发布了新的文献求助10
12秒前
16秒前
一拿关注了科研通微信公众号
17秒前
林夏完成签到,获得积分10
19秒前
童话smile发布了新的文献求助20
19秒前
wanci应助hsbuuwqbdubeq采纳,获得10
23秒前
23秒前
24秒前
24秒前
幻心完成签到,获得积分10
26秒前
yingzir应助核桃小小苏采纳,获得10
26秒前
小马甲应助天天采纳,获得10
26秒前
薄雾密雨完成签到,获得积分10
27秒前
勤劳时光发布了新的文献求助10
28秒前
合适山柏发布了新的文献求助10
28秒前
xixi完成签到 ,获得积分10
29秒前
29秒前
LLLLMMM完成签到,获得积分10
30秒前
30秒前
阳光翩跹完成签到 ,获得积分10
32秒前
一拿发布了新的文献求助10
32秒前
33秒前
33秒前
34秒前
hsbuuwqbdubeq发布了新的文献求助10
35秒前
思源应助初七123采纳,获得10
36秒前
36秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462807
求助须知:如何正确求助?哪些是违规求助? 3056372
关于积分的说明 9051665
捐赠科研通 2746018
什么是DOI,文献DOI怎么找? 1506751
科研通“疑难数据库(出版商)”最低求助积分说明 696202
邀请新用户注册赠送积分活动 695740