Dilated-CBAM: An Efficient Attention Network with Dilated Convolution

卷积(计算机科学) 计算机科学 残余物 人工智能 背景(考古学) 任务(项目管理) 模式识别(心理学) 图像(数学) 路径(计算) 计算机视觉 人工神经网络 算法 工程类 古生物学 程序设计语言 系统工程 生物
作者
Junyan Yang,Jie Jiang
标识
DOI:10.1109/icus52573.2021.9641248
摘要

In computer vision field, image classification as a basic image processing task has been widely concerned. This paper puts forward an efficient attention network with dilated convolution named Dilated-CBAM for image classification. The dilated convolution is applied in the backbone of the residual network to extract the residual edge path features and integrate the global information of the processed image. The amount of network parameters is greatly reduced while the receptive field is expanded, and the network parameters are learnable. By embedding our spatial attention mechanism and channel attention mechanism, the model uses FCN to strengthen the effective information in the image, weaken the invalid information, and summarize the local features of the processed image. Combining the global information and local information, the time and space for network training are saved, while the effective image features can be extracted better. In the design of attention module, this work innovatively applies residual path in attention module for combining context information inside attention mechanism without adding parameters, and helps attention module extract features of interest in image classification task more accurately. In image classification, experiment, we verify the classification effect of the Dilated-CBAM model on Cifar-10 dataset, which is 2.5% higher than ResNet-18, and reaches the classification accuracy of 93.5%. In terms of the efficiency of network training, the Dilated-CBAM reduces the number of training epochs to about 10 on the basis of CBAM model, shortens the training time to about half of the original, which greatly testifies the training efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
景JIA发布了新的文献求助10
1秒前
弹幕发布了新的文献求助10
1秒前
www完成签到 ,获得积分10
2秒前
徐浩哲发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
小丽完成签到,获得积分20
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
Ava应助zorro3574采纳,获得10
5秒前
赘婿应助淡淡醉蓝采纳,获得10
5秒前
科目三应助波妞采纳,获得10
6秒前
斯图伊发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
表示肯定发布了新的文献求助10
9秒前
宝安发布了新的文献求助10
9秒前
9秒前
英姑应助KaleemUllah采纳,获得10
9秒前
任雨光完成签到,获得积分10
11秒前
子车茗应助含糊的依白采纳,获得30
12秒前
AI_Medical发布了新的文献求助30
14秒前
Ava应助wjr采纳,获得10
14秒前
赘婿应助弹幕采纳,获得10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
111完成签到,获得积分10
18秒前
抹茶肥肠完成签到,获得积分10
18秒前
打打应助guzhfia采纳,获得10
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131