Software defect prediction employing BiLSTM and BERT-based semantic feature

计算机科学 软件错误 利用 安全性令牌 软件 源代码 人工智能 机器学习 编码(集合论) 特征(语言学) 数据挖掘 突出 节点(物理) 语义鸿沟
作者
Md Nasir Uddin,Bixin Li,Zafar Ali,Pavlos Kefalas,Inayat Khan,Islam Zada
出处
期刊:Soft Computing [Springer Nature]
标识
DOI:10.1007/s00500-022-06830-5
摘要

Recent years, software defect prediction systems are becoming quite popular since they improve software reliability by identifying the potential bugs in the code. Several models were introduced in literature that aim to support the developers. Unfortunately, these models consider the manually constructed code features and input into machine learning-based classifiers. Moreover, these baseline approaches ignore the semantic and contextual information of the source code. With this paper we present a software defect prediction model that address all these issues. The model employs bidirectional long-short term memory network (BiLSTM) and BERT-based semantic feature (SDP-BB) that captures the semantic features of code to predict defects in the corresponding software. In particular, it utilizes the BiLSTM to exploit contextual information from the embedded token vectors learned through BERT model. Moreover, it utilizes an attention mechanism to capture salient features of the nodes. This is done through a data augmentation technique for generating more training data. We evaluated our approach against state-of-the-art models using ten open-source projects in terms of F1-score in fault prediction. The experiments evaluated the performance of full-token and AST-node data processing methods conducting the length of coverage on each project from 50 to 90% in both within-project defect prediction (WPDP) and cross-project defect prediction (CPDP) experiments. The results indicate that the proposed method outperforms competing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助研友_08ojOZ采纳,获得10
1秒前
wangechun发布了新的文献求助10
1秒前
万嘉俊发布了新的文献求助10
1秒前
科研通AI2S应助高凡采纳,获得10
2秒前
俊逸芸遥发布了新的文献求助10
3秒前
4秒前
5秒前
liuz53发布了新的文献求助10
5秒前
舒心一兰发布了新的文献求助30
5秒前
Johnny0912完成签到,获得积分10
6秒前
背后莫言完成签到 ,获得积分10
6秒前
啵清啵完成签到,获得积分10
6秒前
Dawn发布了新的文献求助10
9秒前
9秒前
拼搏老九发布了新的文献求助10
11秒前
tianzml0应助mphla采纳,获得50
11秒前
大方元风完成签到 ,获得积分10
12秒前
所所应助小汁儿采纳,获得30
12秒前
15秒前
15秒前
15秒前
16秒前
17秒前
17秒前
科研通AI2S应助高凡采纳,获得10
17秒前
背后莫言关注了科研通微信公众号
18秒前
郑万恶完成签到 ,获得积分10
19秒前
小二郎应助东方欲晓采纳,获得10
20秒前
21秒前
21秒前
杪123发布了新的文献求助10
21秒前
zz发布了新的文献求助10
21秒前
22秒前
drew发布了新的文献求助30
22秒前
Joycg完成签到,获得积分10
24秒前
彭于晏应助老实的羊青采纳,获得10
24秒前
汉堡包应助激情的含巧采纳,获得10
25秒前
luoguixun发布了新的文献求助10
25秒前
周开心完成签到,获得积分10
25秒前
volvoamg发布了新的文献求助20
27秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Photosynthesis III 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071500
求助须知:如何正确求助?哪些是违规求助? 2725527
关于积分的说明 7489890
捐赠科研通 2372698
什么是DOI,文献DOI怎么找? 1258220
科研通“疑难数据库(出版商)”最低求助积分说明 610233
版权声明 596916