作者
Sana Surma,Zahoor Ahmad Bhat,Mushtaq Ahmad Bhat,Mehraj Ud Din Shah,Khalid Z. Masoodi,Zahoor Ahmad Dar,Injla Qadri,B. A. Padder,Aflaq Hamid,Mohammad Najeeb Mughal,Mohammad Ashraf Ahanger,Suhail Manzoor
摘要
In August 2020 powdery mildew was observed on pear cv. Fertility at the University research field in Shalimar, Srinagar (J&K), India (34° 08' 30.5'' N and 74° 51' 42.0'' E) with a disease incidence up to 30% (100 leaves observed from ten trees). White irregularly shaped fungal colonies were observed on the abaxial leaf surface which latter covered the whole leaf surface and developed black chasmothecia. The affected leaves appeared brittle, slightly curved upwards and dropped prematurely. Mycelium was hypophyllous, septate and measured 2.0 to 5.0 μm in width. Appressoria were nipple shaped, solitary or present in opposite pairs. Conidiophores were erect, up to 440.0 µm long (n=50), mostly centrally on upper surface of mother cells. Conidiophore foot-cells were filiform, followed by 1 to 3 shorter cells, producing single conidia at the tip. Conidia were hyaline, lanceolate, with a non-papillate rounded apex, measuring55.5 to 81.4 × 14.8 to 22.5 µm (n=50) and devoid of any conspicuous fibrosin bodies. Germ tube was, filiform, twisted, arose basally and measured 2.0 to 5.0 µm in width. Chasmothecia were hypophyllous, black, scattered, globose and measured 195.0 to 255.0 µm in diameter (n=50) having 8 to 12 equatorial, acicular, up to 270.0 µm length appendages with 25.9 to 44.4 µm diameter bulbous base (n=50) and obtuse or subacute apex. Asci in a chasmothecium were clavate to saccate, 62.9 to 81.4 × 18.5 to 22.2 µm (n=50), stalked, and two- spored. Ascospores were 33.3 to 40.7 × 12.9 to 18.5 µm (n=50), pale yellowish or golden brown in color. All morphological features were consistent with Phyllactinia pyri-serotinae (Braun and Cook 2012). To confirm the fungus identity at molecular level, DNA of two isolates was extracted from chasmothecia. The internal transcribed spacer (ITS) sequence of ribosomal DNA was amplified with the primers ITS1 and ITS4 (White et al. 1990) and sequenced. The ITS sequences submitted to NCBI GenBank under Accession No. MZ505441 and MZ505442 have 97 (416/427) & 96 (424/440) per cent and 99 (424/430) & 98 (428/438) per cent base pair matching, with that of P. pyri-serotinae isolates from Japan (AB080521 and AB985507), respectively. Thus, the pathogen was identified as Phyllactinia pyri-serotinae Sawada based on morphological and molecular sequence analyses. The pathogenicity tests of both the isolates were carried out on one year old pear saplings (cv. Fertility) and repeated twice. The inoculum was prepared by collecting P. pyri-serotinae conidia in sterile distilled water from infected pear leaves. Three saplings were inoculated by spraying (15ml per sapling) the inoculum (3 x 105 spores ml-1) on leaf surfaces, while same number of saplings sprayed with sterile distilled water served as non-inoculated controls. After 15 days of incubation at 25oC in a green house, similar symptoms as observed on naturally infected plants were observed on inoculated plants and uninoculated plants remained symptomless. The pathogen of interest observed on inoculated plants was morphologically characterized and found to be similar to P. pyri-serotinae. The voucher specimen was deposited in the Herbarium Crytogamae Indiae Orientalis (HCIO), IARI, New Delhi under accession number 52213. Pear is the third most important temperate fruit grown in India (Chattopadhyay 2009) and our study reveal P. pyri-serotinae as the new causal agent of powdery mildew in addition to P. guttata (Dhar and Shah 1982) under Indian conditions.