Fast neutron-gamma discrimination in organic scintillators via convolution neural network

闪烁体 探测器 卷积神经网络 中子 卷积(计算机科学) 物理 中子探测 伽马射线 深度学习 信号(编程语言) 人工智能 人工神经网络 计算机科学 模式识别(心理学) 光学 材料科学
作者
Seonkwang Yoon,Chaehun Lee,Byung-Hee Won,Sang-Bum Hong,Hee Seo,Ho-Dong Kim
出处
期刊:Journal of the Korean Physical Society [Springer Science+Business Media]
标识
DOI:10.1007/s40042-022-00398-x
摘要

Due to the high gamma sensitivity of organic scintillators, it is essential to discriminate signals induced by neutron from gamma-ray in fast-neutron detection. With the improvement of digital signal processing techniques, diverse discrimination methods based on pulse-shape variation by radiation type have been developed. The main purpose of this study was to verify the applicability of a deep-learning model, especially convolution neural network (CNN), to pulse-shape discrimination (PSD) in organic scintillation detectors, such as BC-501A (liquid) and EJ-276 (plastic). To that end, waveforms of neutron and gamma-ray were experimentally collected using point sources of 137Cs (gamma-ray) and 252Cf (neutron/gamma-ray) and pre-processed for being compatible with deep-learning. The PSD performance was evaluated for both detectors using the charge comparison method (CCM) which is one of the representative conventional PSD techniques of time-domain. In addition, the CNN-based discriminating algorithms were tested, and its preliminary results were confirmed with confusion matrices which indicate the discrimination accuracy of a deep-learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助阳光采纳,获得10
刚刚
1秒前
20011013完成签到 ,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
华仔应助机灵飞阳采纳,获得10
9秒前
潘善若发布了新的文献求助10
9秒前
10秒前
陈少华完成签到 ,获得积分10
10秒前
下一秒发布了新的文献求助10
11秒前
杨乃彬完成签到,获得积分10
11秒前
取名叫做利完成签到,获得积分10
12秒前
赘婿应助喻义梅采纳,获得10
13秒前
小二郎应助小门采纳,获得10
14秒前
ll发布了新的文献求助10
17秒前
正直的鸿完成签到,获得积分10
22秒前
23秒前
万能图书馆应助高贵梦露采纳,获得10
24秒前
momo发布了新的文献求助10
26秒前
传奇3应助boltos采纳,获得10
27秒前
27秒前
28秒前
要减肥笑阳完成签到 ,获得积分10
29秒前
全若之发布了新的文献求助10
34秒前
Jasper应助momo采纳,获得10
36秒前
Kasom完成签到 ,获得积分10
43秒前
顺利一德完成签到,获得积分20
44秒前
香蕉觅云应助Afaq采纳,获得10
44秒前
44秒前
44秒前
manman完成签到,获得积分10
45秒前
45秒前
哈哈哈完成签到,获得积分10
45秒前
YamDaamCaa应助科研通管家采纳,获得30
46秒前
46秒前
领导范儿应助科研通管家采纳,获得10
46秒前
香蕉觅云应助科研通管家采纳,获得10
46秒前
46秒前
大个应助科研通管家采纳,获得10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136