Fast neutron-gamma discrimination in organic scintillators via convolution neural network

闪烁体 探测器 卷积神经网络 中子 卷积(计算机科学) 物理 中子探测 伽马射线 深度学习 信号(编程语言) 人工智能 人工神经网络 计算机科学 模式识别(心理学) 光学 材料科学
作者
Seonkwang Yoon,Chaehun Lee,Byung-Hee Won,Sang-Bum Hong,Hee Seo,Ho-Dong Kim
出处
期刊:Journal of the Korean Physical Society [Springer Science+Business Media]
标识
DOI:10.1007/s40042-022-00398-x
摘要

Due to the high gamma sensitivity of organic scintillators, it is essential to discriminate signals induced by neutron from gamma-ray in fast-neutron detection. With the improvement of digital signal processing techniques, diverse discrimination methods based on pulse-shape variation by radiation type have been developed. The main purpose of this study was to verify the applicability of a deep-learning model, especially convolution neural network (CNN), to pulse-shape discrimination (PSD) in organic scintillation detectors, such as BC-501A (liquid) and EJ-276 (plastic). To that end, waveforms of neutron and gamma-ray were experimentally collected using point sources of 137Cs (gamma-ray) and 252Cf (neutron/gamma-ray) and pre-processed for being compatible with deep-learning. The PSD performance was evaluated for both detectors using the charge comparison method (CCM) which is one of the representative conventional PSD techniques of time-domain. In addition, the CNN-based discriminating algorithms were tested, and its preliminary results were confirmed with confusion matrices which indicate the discrimination accuracy of a deep-learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
SYLH应助科研通管家采纳,获得20
刚刚
MchemG应助Qianyun采纳,获得30
2秒前
2秒前
2秒前
2秒前
Knight-1124发布了新的文献求助10
2秒前
2秒前
华仔应助徐智秀采纳,获得10
2秒前
2秒前
旺旺旺完成签到,获得积分20
3秒前
4秒前
和谐一万发布了新的文献求助10
5秒前
可口可乐发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
程之杭完成签到,获得积分10
7秒前
战战发布了新的文献求助10
7秒前
zengwr发布了新的文献求助10
9秒前
科研助手6应助神的女人采纳,获得10
10秒前
呼呼啦呼啦完成签到,获得积分10
11秒前
11秒前
Jasper应助sylnd126采纳,获得10
11秒前
哈哈发布了新的文献求助20
13秒前
Anita完成签到,获得积分10
13秒前
所所应助和谐一万采纳,获得10
14秒前
高有财完成签到 ,获得积分10
14秒前
14秒前
闪闪自中完成签到,获得积分10
15秒前
17秒前
jjym完成签到,获得积分10
18秒前
图南完成签到 ,获得积分10
18秒前
酷小裤完成签到,获得积分10
18秒前
19秒前
20秒前
项初蝶发布了新的文献求助10
20秒前
独特凡松发布了新的文献求助10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021