Fast neutron-gamma discrimination in organic scintillators via convolution neural network

闪烁体 探测器 卷积神经网络 中子 卷积(计算机科学) 物理 中子探测 伽马射线 深度学习 信号(编程语言) 人工智能 人工神经网络 计算机科学 模式识别(心理学) 光学 材料科学
作者
Seonkwang Yoon,Chaehun Lee,Byung-Hee Won,Sang-Bum Hong,Hee Seo,Ho-Dong Kim
出处
期刊:Journal of the Korean Physical Society [Springer Science+Business Media]
标识
DOI:10.1007/s40042-022-00398-x
摘要

Due to the high gamma sensitivity of organic scintillators, it is essential to discriminate signals induced by neutron from gamma-ray in fast-neutron detection. With the improvement of digital signal processing techniques, diverse discrimination methods based on pulse-shape variation by radiation type have been developed. The main purpose of this study was to verify the applicability of a deep-learning model, especially convolution neural network (CNN), to pulse-shape discrimination (PSD) in organic scintillation detectors, such as BC-501A (liquid) and EJ-276 (plastic). To that end, waveforms of neutron and gamma-ray were experimentally collected using point sources of 137Cs (gamma-ray) and 252Cf (neutron/gamma-ray) and pre-processed for being compatible with deep-learning. The PSD performance was evaluated for both detectors using the charge comparison method (CCM) which is one of the representative conventional PSD techniques of time-domain. In addition, the CNN-based discriminating algorithms were tested, and its preliminary results were confirmed with confusion matrices which indicate the discrimination accuracy of a deep-learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的老姆完成签到,获得积分10
刚刚
微微完成签到,获得积分10
刚刚
刚刚
JQKing完成签到,获得积分10
1秒前
优雅的雁凡完成签到,获得积分10
1秒前
1秒前
longquit完成签到,获得积分10
1秒前
bzd完成签到 ,获得积分10
1秒前
隐形曼青应助等待寄云采纳,获得10
2秒前
aaa应助等待寄云采纳,获得10
2秒前
浮游应助等待寄云采纳,获得10
2秒前
圆锥香蕉应助等待寄云采纳,获得10
2秒前
浮游应助等待寄云采纳,获得10
2秒前
浮游应助等待寄云采纳,获得10
2秒前
MIAAAO应助等待寄云采纳,获得10
2秒前
LydiaZhang完成签到,获得积分10
2秒前
ren发布了新的文献求助10
3秒前
老实新筠完成签到,获得积分10
3秒前
皇晃煌发布了新的文献求助20
3秒前
3秒前
彬彬完成签到,获得积分10
3秒前
咩咩完成签到,获得积分10
4秒前
4秒前
4秒前
慕青应助qingfeng采纳,获得10
4秒前
manjusaka发布了新的文献求助10
5秒前
浮游应助醉蓝采纳,获得10
5秒前
Jasper应助Zephyr采纳,获得30
6秒前
6秒前
kk完成签到,获得积分10
7秒前
hzr完成签到,获得积分10
7秒前
布响丸辣发布了新的文献求助30
7秒前
俭朴的寇应助来日方长采纳,获得10
7秒前
Free完成签到,获得积分10
7秒前
懵懂的采梦完成签到,获得积分10
8秒前
uil完成签到,获得积分10
8秒前
英姑应助蕉叶采纳,获得10
8秒前
果果完成签到,获得积分10
8秒前
halo完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571570
求助须知:如何正确求助?哪些是违规求助? 3992686
关于积分的说明 12358989
捐赠科研通 3665670
什么是DOI,文献DOI怎么找? 2020248
邀请新用户注册赠送积分活动 1054513
科研通“疑难数据库(出版商)”最低求助积分说明 942077