亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Utilization of Machine Learning Method to Predict Hydrocarbon Flow Rate for a Better Reservoir Potential Evaluation

机器学习 扼流圈 人工智能 计算机科学 石油工程 工程类 电气工程
作者
Fadzlin Hasani Kasim,Nurul Hazrina Idris,Saeed Majidaie,Budi Priyatna Kantaatmadja,Numair Ahmed Siddiqui,Akhmal Sidek,Nur Zhatul Shima Yahaya
标识
DOI:10.2523/iptc-22025-ms
摘要

Abstract The numbers of machine learning technologies used in subsurface characterization work is increasing with more company rely on data driven to assist in performing any evaluation. In this study, a supervised random forest machine learning approach was utilized in two stages; first stage was to predict static reservoir using well logs and core as inputs. The output is then used as the basis in the second stage to predict initial oil rate (Qi) and subsequently to determine estimated ultimate recovery (EUR) at targeted interval as proposed in the first stage. Static reservoir machine learning prediction outputs were benchmark with available routine core analysis with the result showed R2 of 88% respectively. For initial oil rate (Qi) prediction, a total of 9000 observation points from 20 wells were extracted for training and blind testing process by using variables such as permeability, net thickness, well choke size, well flowing pressure, average pressure, water cut, irreducible water saturation (Swi), and historical production rate. The estimated ultimate recovery (EUR) is then predicted utilizing the thickness of that unit and the decline rate that is obtained from the neighboring wells that has produced from the said reservoir as the analogue. The Qi and EUR results from machine learning is compared with the estimated Qi and EUR using conventional methods for verification purpose. The results from machine learning dynamic properties prediction showed 97% R2 for training while the testing score mean is 87% against the historical data. High R2 from static and dynamic machine learning prediction indicated that the method was reliable and able to assist petroleum engineer in reservoir potential evaluation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
faylinn发布了新的文献求助10
3秒前
丘比特应助科研通管家采纳,获得30
5秒前
VDC应助科研通管家采纳,获得30
5秒前
VDC应助科研通管家采纳,获得30
6秒前
VDC应助科研通管家采纳,获得30
6秒前
MchemG应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
Frost完成签到,获得积分10
8秒前
11秒前
一见你就笑完成签到 ,获得积分10
12秒前
juile完成签到,获得积分20
20秒前
20秒前
juile发布了新的文献求助30
23秒前
cbx发布了新的文献求助10
25秒前
Apei完成签到 ,获得积分10
26秒前
小井盖完成签到 ,获得积分10
31秒前
白衣胜雪完成签到 ,获得积分10
37秒前
cbx完成签到,获得积分10
39秒前
春鸮鸟完成签到 ,获得积分10
42秒前
menyu发布了新的文献求助10
43秒前
一木张完成签到,获得积分10
51秒前
Jiang完成签到,获得积分10
59秒前
1分钟前
1分钟前
Huyyy完成签到,获得积分20
1分钟前
grnn完成签到,获得积分10
1分钟前
牛牛完成签到 ,获得积分10
1分钟前
1分钟前
黄小柒发布了新的文献求助10
1分钟前
康康XY完成签到 ,获得积分10
1分钟前
研友_Z6Qrbn完成签到,获得积分10
1分钟前
chenting完成签到 ,获得积分10
1分钟前
黄小柒完成签到,获得积分20
1分钟前
666999完成签到,获得积分10
1分钟前
faylinn完成签到,获得积分10
1分钟前
怕孤独的海秋完成签到,获得积分10
1分钟前
木头完成签到 ,获得积分10
1分钟前
DW完成签到,获得积分10
1分钟前
ylyao完成签到 ,获得积分10
1分钟前
热带蚂蚁完成签到 ,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671180
求助须知:如何正确求助?哪些是违规求助? 3228098
关于积分的说明 9778330
捐赠科研通 2938347
什么是DOI,文献DOI怎么找? 1609853
邀请新用户注册赠送积分活动 760473
科研通“疑难数据库(出版商)”最低求助积分说明 735976