已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of a deep learning-based auto-segmentation algorithm for hepatocellular carcinoma (HCC) and application to predict microvascular invasion of HCC using CT texture analysis: preliminary results

医学 肝细胞癌 分割 组内相关 置信区间 再现性 放射科 人工智能 逻辑回归 优势比 核医学 算法 内科学 统计 数学 计算机科学
作者
Sungeun Park,Jung Hoon Kim,Jieun Kim,Witanto Joseph,Doohee Lee,Sang Joon Park
出处
期刊:Acta Radiologica [SAGE Publishing]
卷期号:64 (3): 907-917 被引量:5
标识
DOI:10.1177/02841851221100318
摘要

Background Automatic segmentation has recently been developed to yield objective data. Prediction of microvascular invasion (MVI) of hepatocellular carcinoma (HCC) using radiomics has been reported. Purpose To develop a deep learning-based auto-segmentation algorithm (DL-AS) for the detection of HCC and to predict MVI using computed tomography (CT) texture analysis. Material and Methods We retrospectively collected training data from 249 patients with HCC and validation set from 35 patients. Lesions of the training set were manually drawn by radiologist, in the delayed phase. 2D U-Net was selected as the DL architecture. Using the validation set, one radiologist manually drew 2D and 3D regions of interest twice, and the developed DL-AS was performed twice with a one-month time interval. The reproducibility was calculated using intraclass correlation coefficients (ICC). Logistic regression was performed to predict MVI. Results ICC was in the range of 0.190–0.998/0.341–0.997 in the manual 3D/2D segmentation. In contrast, it was perfect in 3D/2D using DL-AS, with a success rate of 88.6% for the detection of HCC. For predicting MVI, sphericity was a significant parameter (odds ratio <0.001; 95% confidence interval <0.001–0.206; P = 0.020) for predicting MVI using 2D DL-AS. However, 3D DL-AS segmentation did not yield a predictive parameter. Conclusion The auto-segmentation of HCC using DL-AS provides perfect reproducibility, although it failed to detect 11.4% (4/35). However, the extracted parameters yielded different important predictors of MVI in HCC. Sphericity was a significant predictor in 2D DL-AS and 3D manual segmentation, while discrete compactness was a significant predictor in 2D manual segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小鲤鱼完成签到 ,获得积分10
1秒前
MMMMMeng完成签到,获得积分10
4秒前
潇洒绿蕊完成签到,获得积分10
5秒前
5秒前
嘟嘟嘟嘟完成签到 ,获得积分10
6秒前
7秒前
Joaquin完成签到 ,获得积分10
7秒前
8秒前
9秒前
Xiaoxiao应助ZHN采纳,获得50
9秒前
9秒前
Lucas应助TKTKW采纳,获得30
11秒前
12秒前
风行发布了新的文献求助10
14秒前
14秒前
14秒前
兴奋平松完成签到 ,获得积分10
17秒前
20秒前
hello小鹿完成签到,获得积分10
20秒前
秋作完成签到 ,获得积分10
22秒前
nnn完成签到,获得积分10
23秒前
CodeCraft应助科研进化中采纳,获得10
24秒前
25秒前
风行完成签到,获得积分10
26秒前
mymEN完成签到 ,获得积分10
27秒前
JamesPei应助燕傲柏采纳,获得10
29秒前
胡添傲发布了新的文献求助10
30秒前
夏日香气发布了新的文献求助10
30秒前
ddm完成签到 ,获得积分10
33秒前
35秒前
科研通AI2S应助ying采纳,获得10
35秒前
張医铄完成签到,获得积分10
36秒前
YEM完成签到 ,获得积分10
36秒前
38秒前
Akim应助uerly采纳,获得10
38秒前
呐呐呐完成签到 ,获得积分10
38秒前
吕绪特发布了新的文献求助10
39秒前
39秒前
开心的野狼完成签到 ,获得积分10
41秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965451
求助须知:如何正确求助?哪些是违规求助? 3510745
关于积分的说明 11154993
捐赠科研通 3245194
什么是DOI,文献DOI怎么找? 1792779
邀请新用户注册赠送积分活动 874088
科研通“疑难数据库(出版商)”最低求助积分说明 804168