[Effects of different spectra types on the accuracy and correction of soil salt content inversion in Yinchuan Plain, China].

高光谱成像 支持向量机 偏最小二乘回归 环境科学 反演(地质) 土壤盐分 土壤科学 遥感 主成分分析 土壤水分 计算机科学 数学 人工智能 地质学 统计 古生物学 构造盆地
作者
Ruihua Chen,Tiao-Hao Shang,Junhua Zhang,Yijing Wang,Keli Jia
出处
期刊:PubMed 卷期号:33 (4): 922-930 被引量:1
标识
DOI:10.13287/j.1001-9332.202204.025
摘要

Soil salinization is one of key drivers for the degradation of soil quality and yield in arable land. To accurately and quickly evaluate soil salt content in Yinchuan Plain, field and indoor hyperspectral data were processed with first order differential (FDR) transformation, then the feature bands were identified by stepwise regression (SR). Partial least squares regression (PLSR) and support vector machines (SVM) were used to build models, which were verified to figure out the optimal hyperspectral type for the study area. Moreover, segmented and global corrections were performed to process poor hyperspectral, aiming to improve the accuracy of soil salt content inversion. The results showed that the accuracy of soil salt content inversion model based on field hyperspectral data was 58.9% higher than that of the indoor hyperspectral data. The accuracy of the inversion was improved through the segmented and global correction of the indoor hyperspectral. We found that the segmented correction is more accurate for the PLSR model (Rc2=0.790, Rp2=0.633, RPD=1.64) and the global correction is more accurate for the SVM model (Rc2=0.927, Rp2=0.947, RPD=3.87). The SVM models' inversion accuracy was higher than that of PLSR, with the field hyperspectral model fitted the best, followed by the indoor hyperspectral processed with the global correction and the indoor hyperspectral processed with the segmented correction, while the indoor hyperspectral the worst. Our results suggest that field hyperspectral data could contribute to the quantitative inversion of soil salt content in Yinchuan Plain. The corrected indoor hyperspectral could significantly enhance the inversion accuracy of soil salt content, which could guarantee food security and ecological quality development.土壤盐渍化是导致土壤质量下降、耕地减产的重要因素之一。为准确快速评价银川平原土壤含盐量,本研究对野外高光谱数据和室内高光谱数据进行一阶微分(FDR)变换,逐步回归(SR)筛选特征波段,利用偏最小二乘回归(PLSR)与支持向量机(SVM)进行建模,明确适用于本地区土壤含盐量准确反演的光谱类型,并对较差光谱类型进行分段校正与全局校正,尝试提高土壤含盐量反演精度。结果表明: 基于野外光谱的土壤含盐量反演模型精度比室内光谱平均高58.9%;对室内光谱进行分段校正、全局校正后反演精度均有提高,其中,PLSR以分段校正精度更高,建模决定系数(Rc2)、验证决定系数(Rp2)和相对分析误差(RPD)分别为0.790、0.633和1.64,而SVM以全局校正精度更高,Rc2、Rp2和RPD分别为0.927、0.947和3.87;SVM模型的反演精度高于PLSR,其中,野外光谱建模效果最佳,室内全局校正光谱与室内分段校正光谱次之,室内光谱最差。因此,野外高光谱可实现对银川平原土壤表层含盐量的定量反演,经校正的室内光谱对土壤含盐量反演精度显著提升,均可为粮食安全与生态环境高质量发展提供保障。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布吉岛完成签到,获得积分10
1秒前
3秒前
3秒前
科研通AI2S应助曾梦采纳,获得10
5秒前
顾念完成签到 ,获得积分10
6秒前
zxj关注了科研通微信公众号
6秒前
6秒前
8秒前
caicai完成签到,获得积分10
9秒前
同力力力发布了新的文献求助10
9秒前
下雪天的土豆完成签到 ,获得积分10
12秒前
yu发布了新的文献求助10
13秒前
NexusExplorer应助简晴采纳,获得10
15秒前
潇洒的小鸽子完成签到 ,获得积分10
15秒前
16秒前
妞妞月完成签到 ,获得积分10
16秒前
共享精神应助凛雪鸦采纳,获得10
18秒前
18秒前
18秒前
18秒前
噜噜噜完成签到,获得积分10
19秒前
搜集达人应助宋十一采纳,获得10
19秒前
panxf发布了新的文献求助10
19秒前
20秒前
20秒前
21秒前
赘婿应助同力力力采纳,获得10
21秒前
调研昵称发布了新的文献求助10
23秒前
sail完成签到,获得积分10
23秒前
24秒前
烟花应助11采纳,获得10
24秒前
25秒前
不配.应助guoguo采纳,获得20
26秒前
26秒前
辉@应助大胖胖胖er采纳,获得10
27秒前
zxj发布了新的文献求助10
27秒前
30秒前
30秒前
Lou完成签到,获得积分10
32秒前
柯ke完成签到,获得积分10
32秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138230
求助须知:如何正确求助?哪些是违规求助? 2789160
关于积分的说明 7790351
捐赠科研通 2445545
什么是DOI,文献DOI怎么找? 1300521
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046