Dynamic community detection over evolving networks based on the optimized deep graph infomax

最大熵 计算机科学 动态网络分析 人工智能 图形 代表(政治) 活力 复杂网络 节点(物理) 聚类分析 嵌入 图嵌入 数据挖掘 理论计算机科学 机器学习 频道(广播) 计算机网络 结构工程 政治 盲信号分离 政治学 万维网 法学 工程类 物理 量子力学
作者
Hao Líu,Langzhou He,Fan Zhang,Zhen Wang,Chao Gao
出处
期刊:Chaos [American Institute of Physics]
卷期号:32 (5) 被引量:3
标识
DOI:10.1063/5.0086795
摘要

As complex systems, dynamic networks have obvious nonlinear features. Detecting communities in dynamic networks is of great importance for understanding the functions of networks and mining evolving relationships. Recently, some network embedding-based methods stand out by embedding the global network structure and properties into a low-dimensional representation for community detection. However, such kinds of methods can only be utilized at each single time step independently. As a consequence, the information of all time steps requires to be stored, which increases the computational cost. Besides this, the neighbors of target nodes are considered equally when aggregating nodes in networks, which omits the local structural feature of networks and influences the accuracy of node representation. To overcome such shortcomings, this paper proposes a novel optimized dynamic deep graph infomax (ODDGI) method for dynamic community detection. Since the recurrent neural network (RNN) can capture the dynamism of networks while avoiding storing all information of dynamic networks, our ODDGI utilizes RNN to update deep graph infomax parameters, and thus, there is no need to store the knowledge of nodes in full time span anymore. Moreover, the importance of nodes is considered using similarity aggregation strategy to improve the accuracy of node representation. The experimental results on both the real-world and synthetic networks prove that our method surpasses other state-of-the-art dynamic community detection algorithms in clustering accuracy and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗨波发布了新的文献求助10
1秒前
feilu发布了新的文献求助10
1秒前
雾散完成签到,获得积分10
2秒前
2秒前
zxb关闭了zxb文献求助
2秒前
2秒前
2秒前
科目三应助515采纳,获得10
3秒前
只能吃到7分饱完成签到,获得积分10
3秒前
3秒前
3秒前
思源应助ranj采纳,获得10
3秒前
hh完成签到,获得积分10
4秒前
领导范儿应助xiaowang采纳,获得10
4秒前
王文瑾完成签到,获得积分10
4秒前
4秒前
SYLH应助心平气静采纳,获得10
4秒前
HHHAN发布了新的文献求助10
5秒前
酷小裤发布了新的文献求助10
5秒前
办公的牛马完成签到,获得积分10
5秒前
he完成签到,获得积分20
5秒前
852应助llt采纳,获得10
5秒前
Kirito完成签到,获得积分10
5秒前
5秒前
Sodagreen2023发布了新的文献求助10
6秒前
临界发布了新的文献求助10
6秒前
7秒前
Ava应助chenzhezhixp采纳,获得10
7秒前
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
鸣笛应助科研通管家采纳,获得10
7秒前
tramp应助科研通管家采纳,获得20
7秒前
7秒前
Orange应助科研通管家采纳,获得10
7秒前
科目三应助天黑黑采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953820
求助须知:如何正确求助?哪些是违规求助? 3499685
关于积分的说明 11096658
捐赠科研通 3230222
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801514