MBiLSTMGloVe: Embedding GloVe knowledge into the corpus using multi-layer BiLSTM deep learning model for social media sentiment analysis

计算机科学 社会化媒体 情绪分析 图层(电子) 嵌入 人工智能 自然语言处理 深度学习 文字嵌入 机器学习 数据科学 万维网 化学 有机化学
作者
Amit Pimpalkar,Jeberson Retna Raj R
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:203: 117581-117581 被引量:49
标识
DOI:10.1016/j.eswa.2022.117581
摘要

The fast improvement and transformation of online media and unique sites with critical reviews of items, movies, goods, etc. have created a tremendous assortment of assets for clients everywhere around the globe. This information might contain a great deal of data, including product reviews, anticipating market changes, and the extremity of film assessments. Sentiment Analysis (SA) innovation produces phonetic comprehension according to the viewpoint of machines through the handling and investigation of immense amounts of information, which is a hot expedition passageway heading into the field of man-made reasoning, a.k.a. Artificial Intelligence (AI). To address the substance appendage from short texts, we want to investigate the further semantics of words by exploiting thoughtful Machine Learning (ML) and Deep Learning (DL) strategies. In this way, AI, ML, and DL procedures can control and distribute intuition introspection in these difficulties. Our recommended model, based on the DL method and the GloVe word embedding approach, learns the features using a CNN layer and then coordinates those parts into a Multi-Layered Bi-DirectionalLong-Short-Term Memory (MBiLSTM) to capture long-range embedded circumstances. The main aim of this experiment is to give an adequate answer to examine feelings and user reviews in positive and negative classifications. Our runs show that a test accuracy of 92.05% and a validation accuracy of 93.55% can be attained with the given model. The framework is assessed using IMDB datasets. The proposed model outflanks existing pattern models, which show that going past the substance of a tweet is valuable in opinion classification orders since it gives the classifier a deep understanding of the chore.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
djbj2022发布了新的文献求助10
1秒前
3秒前
momo发布了新的文献求助10
3秒前
5秒前
wswswsws完成签到,获得积分10
6秒前
lan完成签到,获得积分10
7秒前
haokeyan发布了新的文献求助10
7秒前
巫马沛春完成签到,获得积分10
8秒前
9秒前
上善若水发布了新的文献求助10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
11111111完成签到,获得积分10
13秒前
jawa完成签到 ,获得积分10
14秒前
Singularity应助MailkMonk采纳,获得10
16秒前
21秒前
25秒前
英俊的铭应助大喜子采纳,获得10
26秒前
认真的迎南完成签到,获得积分10
28秒前
嘎嘎发布了新的文献求助10
28秒前
29秒前
Xuezi完成签到 ,获得积分10
29秒前
张飞扬完成签到,获得积分10
30秒前
leek完成签到 ,获得积分10
31秒前
可爱的函函应助轻松向彤采纳,获得10
32秒前
Dou完成签到,获得积分10
32秒前
慧敏发布了新的文献求助10
35秒前
宇生完成签到 ,获得积分10
35秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416408
求助须知:如何正确求助?哪些是违规求助? 3018296
关于积分的说明 8883554
捐赠科研通 2705664
什么是DOI,文献DOI怎么找? 1483768
科研通“疑难数据库(出版商)”最低求助积分说明 685790
邀请新用户注册赠送积分活动 680968