细胞器
脂质体
荧光
生物物理学
化学
两亲性
细胞质
生物相容性
膜
荧光显微镜
纳米技术
生物化学
材料科学
生物
有机化学
聚合物
物理
量子力学
共聚物
作者
Ren-Siang Wu,Yu‐Syuan Lin,Amit Nain,Binesh Unnikrishnan,Yu‐Feng Lin,Cheng‐Ruei Yang,Tzu‐Heng Chen,Yu‐Fen Huang,Chih‐Ching Huang,Huan‐Tsung Chang
标识
DOI:10.1016/j.bios.2022.114362
摘要
Monitoring of structural changes in subcellular organelles is critical to evaluate the chemotherapeutic response of cells. However, commercial organelle selective fluorophores are easily photobleached, and thus are unsuitable for real-time and long-term observation. We have developed photostable carbon-dot liposomes (CDsomes)-based fluorophores for organellar and suborganellar imaging to circumvent these issues. The CDs synthesized through a mild pyrolysis/hydrolysis process exhibit amphipathic nature and underwent self-assembly to form liposome-like structures (CDsomes). The controlled hydrophilicity or hydrophobicity-guided preparation of CDsomes are used to selectively and rapidly (<1 min) stain nucleolus, cytoplasm, and membrane. In addition, the CDsomes offer universal high-contrast staining not only in fixed cells but also in living cells, allowing real-time observation and morphological identification in the specimen. The as-prepared CDsomes exhibit excitation-dependent fluorescence, and are much more stable under photoirradiation (e.g., ultraviolet light) than traditional subcellular dyes. Interestingly, the CDsomes can be transferred to daughter cells by diluting the particles, enabling multigenerational tracking of suborganelle for up to six generations, without interrupting the staining pattern. Therefore, we believe that the ultra-photostable CDsomes with high biocompatibility, and long-term suborganellar imaging capabilities, hold a great potential for screening and evaluating therapeutic performance of various chemotherapeutic drugs.
科研通智能强力驱动
Strongly Powered by AbleSci AI