Reconfiguring magnetic resonances with the plasmonic phase-change material In3SbTe2

材料科学 等离子体子 光电子学 超材料 电介质 共振(粒子物理) 表面等离子共振 光子学 纳米光刻 偶极子 折射率 红外线的 光学 纳米技术 物理 纳米颗粒 制作 病理 粒子物理学 医学 量子力学 替代医学
作者
Lukas Conrads,Andreas Heßler,Konstantin Wirth,Matthias Wuttig,Thomas Taubner
标识
DOI:10.1117/12.2621291
摘要

For miniaturized active photonic components, resonance tuning of nanoantennas is essential. Phase-change materials (PCMs) have been established as prime candidates for non-volatile resonance tuning based on a change in refractive index [1]. Currently, a novel material class of switchable infrared plasmonic PCMs, like In3SbTe2 (IST), is emerging. Since IST can be locally optically switched between dielectric (amorphous phase) and metallic (crystalline phase) states in the whole infrared range, it becomes possible to directly change the geometry and size of nanoantennas to tune their infrared resonances by more than 4 µm. In particular, resonant nanostructures on sub-meta-atom level can be directly written, erased and modified in the thin IST film without cumbersome nanofabrication techniques. Additionally, prepatterned nanoantennas can be screened by a thin IST film resulting in an on/off functionality. With an IST patch two nanoantennas can be soldered together to shift the resonance [2]. Here, crystalline IST split-ring resonators (SRRs) are directly optically written and reconfigured in their arm size to continuously tune their magnetic dipole resonances over a range of 2.4 µm without changing their electric dipole resonances. The SRRs are further modified into crescents and J-antennas, which feature more complex resonance modes dependent on the polarization of the incident light. The ability of erasing and modifying the structures enables reversible and fast adaptions of the fabricated antenna geometries. In addition, the experimental results and the corresponding mode assignments are confirmed with full-wave simulations [3]. Our concepts are well-suited for rapid prototyping, speeding up workflows for engineering ultrathin, tunable, plasmonic devices for infrared nanophotonics, telecommunications or (bio)sensing. [1] Wuttig et al., Nature Photonics 11, 465 (2017) [2] Heßler et al., Nature Communications 12, 924 (2021) [3] Heßler, Conrads et al. Nano Letters (submitted) (2021)

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
面包发布了新的文献求助30
1秒前
泽成完成签到,获得积分10
1秒前
苏杰发布了新的文献求助10
1秒前
Owen应助陈露佳采纳,获得10
1秒前
1秒前
1秒前
2秒前
wkx完成签到 ,获得积分10
2秒前
2秒前
2秒前
顺心稀发布了新的文献求助10
3秒前
4秒前
4秒前
文静发布了新的文献求助10
4秒前
4秒前
5秒前
124578发布了新的文献求助10
5秒前
zho发布了新的文献求助10
5秒前
zc应助苏杰采纳,获得10
7秒前
wsh发布了新的文献求助10
7秒前
赘婿应助呜呜呜呜采纳,获得10
7秒前
mwj发布了新的文献求助10
7秒前
杨树发布了新的文献求助10
7秒前
uii发布了新的文献求助10
8秒前
刘璇1发布了新的文献求助20
8秒前
8秒前
dique3hao完成签到 ,获得积分10
8秒前
木子完成签到,获得积分10
8秒前
9秒前
科研通AI2S应助yxj采纳,获得100
9秒前
FD发布了新的文献求助10
9秒前
科研通AI2S应助陈露佳采纳,获得10
9秒前
bkagyin应助暴富采纳,获得10
9秒前
kk发布了新的文献求助10
10秒前
稽TR完成签到,获得积分10
10秒前
武科大发布了新的文献求助10
11秒前
www完成签到,获得积分20
11秒前
11秒前
meixinger发布了新的文献求助10
12秒前
科研通AI5应助星球日记采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514812
求助须知:如何正确求助?哪些是违规求助? 3097140
关于积分的说明 9234298
捐赠科研通 2792136
什么是DOI,文献DOI怎么找? 1532287
邀请新用户注册赠送积分活动 711947
科研通“疑难数据库(出版商)”最低求助积分说明 707045