Selective maintenance and inspection optimization for partially observable systems: An interactively sequential decision framework

可观测性 组分(热力学) 可见的 计算机科学 状态维修 马尔可夫决策过程 部分可观测马尔可夫决策过程 过程(计算) 马尔可夫过程 数学优化 马尔可夫链 可靠性工程 马尔可夫模型 工程类 机器学习 数学 量子力学 热力学 统计 操作系统 物理 应用数学
作者
Yu Liu,Jian Gao,Tao Jiang,Zhiguo Zeng
出处
期刊:IISE transactions [Taylor & Francis]
卷期号:55 (5): 463-479 被引量:17
标识
DOI:10.1080/24725854.2022.2062627
摘要

Selective maintenance is an important condition-based maintenance strategy for multi-component systems, where optimal maintenance actions are identified to maximize the success likelihood of subsequent missions. Most of the existing works on selective maintenance assumed that after each mission, the components’ states can be precisely known without additional efforts. In engineering scenarios, the states of the components in a system need to be revealed by inspections that are usually inaccurate. Inspection activities also consume the limited resources shared with maintenance activities. We, thus, put forth a novel decision framework for selective maintenance of partially observable systems with which maintenance and inspection activities will be scheduled in a holistic and interactively sequential manner. As the components’ states are partially observable and the remaining resources are fully observable, we formulate a finite-horizon Mixed Observability Markov Decision Process (MOMDP) model to support the optimization. In the MOMDP model, both maintenance and inspection actions can be interactively and sequentially planned based on the distributions of components’ states and the remaining resources. To improve the solution efficiency of the MOMDP model, we customize a Deep Value Network (DVN) algorithm in which the maximum mission success probability is approximated. A five-component system and a real-world multi-state coal transportation system are used to demonstrate the effectiveness of the proposed method. It is shown that the probability of the system successfully completing the next mission can be significantly increased by taking inspections into account. The results also demonstrate the computational efficiency of the customized DVN algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助从容的柜子采纳,获得10
2秒前
林屿发布了新的文献求助10
2秒前
李汝嘉完成签到,获得积分20
3秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
PG发布了新的文献求助10
5秒前
5秒前
唠叨的傲薇完成签到 ,获得积分10
5秒前
脑洞疼应助123采纳,获得30
5秒前
7秒前
8秒前
Steve发布了新的文献求助10
8秒前
xcx完成签到,获得积分10
8秒前
搞怪的谷云完成签到,获得积分10
8秒前
说好不哭完成签到,获得积分10
9秒前
mingming发布了新的文献求助10
9秒前
温暖的绮完成签到,获得积分10
9秒前
英俊的铭应助zz采纳,获得10
10秒前
刘丹丹完成签到,获得积分10
11秒前
梦桃发布了新的文献求助10
11秒前
说好不哭发布了新的文献求助10
13秒前
13秒前
Steve完成签到,获得积分20
13秒前
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
14秒前
小二郎应助PG采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得30
14秒前
chenhbin应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
14秒前
传奇3应助科研通管家采纳,获得10
15秒前
15秒前
华仔应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952902
求助须知:如何正确求助?哪些是违规求助? 3498332
关于积分的说明 11091532
捐赠科研通 3228969
什么是DOI,文献DOI怎么找? 1785163
邀请新用户注册赠送积分活动 869202
科研通“疑难数据库(出版商)”最低求助积分说明 801377