Selective maintenance and inspection optimization for partially observable systems: An interactively sequential decision framework

可见的 计算机科学 量子力学 物理
作者
Yu Liu,Jian Gao,Tao Jiang,Zhiguo Zeng
出处
期刊:IISE transactions [Informa]
卷期号:55 (5): 463-479 被引量:44
标识
DOI:10.1080/24725854.2022.2062627
摘要

Selective maintenance is an important condition-based maintenance strategy for multi-component systems, where optimal maintenance actions are identified to maximize the success likelihood of subsequent missions. Most of the existing works on selective maintenance assumed that after each mission, the components’ states can be precisely known without additional efforts. In engineering scenarios, the states of the components in a system need to be revealed by inspections that are usually inaccurate. Inspection activities also consume the limited resources shared with maintenance activities. We, thus, put forth a novel decision framework for selective maintenance of partially observable systems with which maintenance and inspection activities will be scheduled in a holistic and interactively sequential manner. As the components’ states are partially observable and the remaining resources are fully observable, we formulate a finite-horizon Mixed Observability Markov Decision Process (MOMDP) model to support the optimization. In the MOMDP model, both maintenance and inspection actions can be interactively and sequentially planned based on the distributions of components’ states and the remaining resources. To improve the solution efficiency of the MOMDP model, we customize a Deep Value Network (DVN) algorithm in which the maximum mission success probability is approximated. A five-component system and a real-world multi-state coal transportation system are used to demonstrate the effectiveness of the proposed method. It is shown that the probability of the system successfully completing the next mission can be significantly increased by taking inspections into account. The results also demonstrate the computational efficiency of the customized DVN algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咿呀喂发布了新的文献求助10
4秒前
4秒前
4秒前
sansan发布了新的文献求助30
4秒前
季夏聆风吟完成签到 ,获得积分10
6秒前
粱夏烟发布了新的文献求助10
9秒前
shelemi发布了新的文献求助10
13秒前
共享精神应助顾长生采纳,获得10
13秒前
ksq完成签到,获得积分10
15秒前
超级安荷完成签到,获得积分10
17秒前
17秒前
17秒前
善学以致用应助呜呜呜采纳,获得10
19秒前
Owen应助wailwq采纳,获得10
21秒前
lzp发布了新的文献求助10
21秒前
21秒前
22秒前
专注的问寒应助sansan采纳,获得30
22秒前
YYYHHH应助1234采纳,获得50
25秒前
QuarkQD完成签到 ,获得积分10
26秒前
搜集达人应助不开心我的采纳,获得10
27秒前
27秒前
slx发布了新的文献求助10
28秒前
明月念斯人完成签到 ,获得积分10
30秒前
30秒前
不坠发布了新的文献求助10
31秒前
热情曲奇完成签到,获得积分10
31秒前
shelemi发布了新的文献求助10
34秒前
顾长生发布了新的文献求助10
34秒前
椰子完成签到,获得积分10
34秒前
呜呜呜发布了新的文献求助10
35秒前
研友_nVWP2Z完成签到 ,获得积分0
35秒前
Mindy完成签到 ,获得积分10
36秒前
nzz发布了新的文献求助10
40秒前
善学以致用应助slx采纳,获得10
40秒前
41秒前
风铃完成签到,获得积分10
42秒前
黄景滨完成签到 ,获得积分10
45秒前
初见发布了新的文献求助10
46秒前
不坠发布了新的文献求助10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877790
求助须知:如何正确求助?哪些是违规求助? 6545886
关于积分的说明 15682325
捐赠科研通 4996466
什么是DOI,文献DOI怎么找? 2692723
邀请新用户注册赠送积分活动 1634745
关于科研通互助平台的介绍 1592415