Modeling the daytime net primary productivity of maize at the canopy scale based on UAV multispectral imagery and machine learning

初级生产 多光谱图像 白天 天蓬 环境科学 叶面积指数 遥感 气象学 大气科学 生态系统 生态学 地理 地质学 生物
作者
Manman Peng,Wenting Han,Chaoqun Li,Xiaomin Yao,Guomin Shao
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:367: 133041-133041 被引量:10
标识
DOI:10.1016/j.jclepro.2022.133041
摘要

Net primary productivity (NPP) is an important index to evaluate the carbon absorption capacity in agricultural ecosystems, timely and accurate spatial–temporal variations of NPP play a significant role in guiding agricultural production. Currently, NPP observation at the canopy scale is primarily based on the chamber method. However, upscaling the spatial–temporal estimates of NPP at the canopy scale is still challenging. In this study, maize daytime NPP was measured by the chamber, and multispectral images of maize canopies were obtained via unmanned aerial vehicle (UAV) multispectral system. We explored the potential of multispectral images for estimating maize daytime NPP at the canopy scale. Four machine learning algorithms were employed to estimate daytime NPP using ground factors and vegetation indices (VIs) × photosynthetic active radiation (PAR) independently. NPP estimation models based on the gradient boosting regression (GBR), random forest (RF), and support vector regression (SVR) using ground factors outperformed the VIs × PAR-based model, barring the ridge regression (RR) model. Among them, the GBR-based models performed better, and the model using ground factors (R2 = 0.958) outperformed those using VIs × PAR (R2 = 0.899). However, the ground factor-based GBR model was complex and contained more input parameters, thus making it highly-time and labor-intensive, and highly destructive. Moreover, ground factor-based GBR model could not reflect the variation of NPP in maize canopy. The VIs × PAR-based GBR model could explain 89.9% of the daytime NPP, and it only required two parameters, including VIs and PAR. Therefore, the VIs × PAR-based GBR model can easily obtain high resolution and long time-series NPP information nondestructively for a large range. This study reveals that maize daytime NPP can be estimated using high-resolution UAV multispectral images and provides a good reference for promoting the monitoring and upscaling of NPP observations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
欢檬应助和谐的阁采纳,获得50
刚刚
陈麦子发布了新的文献求助10
2秒前
2秒前
Cher1she完成签到,获得积分10
3秒前
庾稀发布了新的文献求助10
3秒前
斯文败类应助小次之山采纳,获得10
4秒前
研友_VZG7GZ应助pdx666采纳,获得10
5秒前
完美世界应助祎橘采纳,获得10
6秒前
诗梦完成签到,获得积分10
6秒前
大模型应助善良的冥茗采纳,获得10
7秒前
希望天下0贩的0应助Pikno123采纳,获得10
8秒前
10秒前
10秒前
Rondab应助科研达人采纳,获得10
10秒前
陈麦子完成签到,获得积分10
11秒前
12秒前
酷酷小子发布了新的文献求助10
13秒前
14秒前
1364135702完成签到 ,获得积分10
16秒前
王盼盼发布了新的文献求助10
17秒前
17秒前
KimJongUn发布了新的文献求助10
18秒前
18秒前
帅气的小兔子完成签到 ,获得积分10
18秒前
19秒前
19秒前
传奇3应助科研通管家采纳,获得10
20秒前
鲤鱼西装应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得20
20秒前
Lc应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
ningwu应助科研通管家采纳,获得10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
搜集达人应助112345采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533831
关于积分的说明 11263946
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882968
科研通“疑难数据库(出版商)”最低求助积分说明 809629