Modeling the daytime net primary productivity of maize at the canopy scale based on UAV multispectral imagery and machine learning

初级生产 多光谱图像 白天 天蓬 环境科学 叶面积指数 遥感 气象学 大气科学 生态系统 生态学 地理 地质学 生物
作者
Manman Peng,Wenting Han,Chaoqun Li,Xiaomin Yao,Guomin Shao
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:367: 133041-133041 被引量:10
标识
DOI:10.1016/j.jclepro.2022.133041
摘要

Net primary productivity (NPP) is an important index to evaluate the carbon absorption capacity in agricultural ecosystems, timely and accurate spatial–temporal variations of NPP play a significant role in guiding agricultural production. Currently, NPP observation at the canopy scale is primarily based on the chamber method. However, upscaling the spatial–temporal estimates of NPP at the canopy scale is still challenging. In this study, maize daytime NPP was measured by the chamber, and multispectral images of maize canopies were obtained via unmanned aerial vehicle (UAV) multispectral system. We explored the potential of multispectral images for estimating maize daytime NPP at the canopy scale. Four machine learning algorithms were employed to estimate daytime NPP using ground factors and vegetation indices (VIs) × photosynthetic active radiation (PAR) independently. NPP estimation models based on the gradient boosting regression (GBR), random forest (RF), and support vector regression (SVR) using ground factors outperformed the VIs × PAR-based model, barring the ridge regression (RR) model. Among them, the GBR-based models performed better, and the model using ground factors (R2 = 0.958) outperformed those using VIs × PAR (R2 = 0.899). However, the ground factor-based GBR model was complex and contained more input parameters, thus making it highly-time and labor-intensive, and highly destructive. Moreover, ground factor-based GBR model could not reflect the variation of NPP in maize canopy. The VIs × PAR-based GBR model could explain 89.9% of the daytime NPP, and it only required two parameters, including VIs and PAR. Therefore, the VIs × PAR-based GBR model can easily obtain high resolution and long time-series NPP information nondestructively for a large range. This study reveals that maize daytime NPP can be estimated using high-resolution UAV multispectral images and provides a good reference for promoting the monitoring and upscaling of NPP observations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ingrid发布了新的文献求助10
刚刚
万柏祺完成签到,获得积分10
刚刚
zzz发布了新的文献求助10
刚刚
张姣姣完成签到,获得积分10
1秒前
陆陆完成签到,获得积分10
4秒前
4秒前
依依完成签到,获得积分10
5秒前
香蕉觅云应助jjgbmt采纳,获得10
5秒前
轻松笙发布了新的文献求助10
5秒前
laola发布了新的文献求助10
6秒前
丘比特应助淡定的萝莉采纳,获得10
6秒前
6秒前
SciGPT应助gyx采纳,获得10
6秒前
Russell完成签到,获得积分10
7秒前
8秒前
yier完成签到,获得积分10
9秒前
Russell发布了新的文献求助10
10秒前
华仔应助Sunny采纳,获得10
10秒前
11秒前
冰夏发布了新的文献求助10
11秒前
果果完成签到,获得积分10
11秒前
杀殿完成签到 ,获得积分10
12秒前
高贵的小熊猫完成签到,获得积分10
12秒前
七月不看海完成签到,获得积分10
12秒前
bigger.b完成签到,获得积分10
13秒前
Ingrid完成签到,获得积分10
14秒前
虚幻的凤完成签到,获得积分10
14秒前
为你博弈完成签到,获得积分10
14秒前
我就是我完成签到,获得积分10
14秒前
陌子完成签到 ,获得积分10
15秒前
huangyao完成签到 ,获得积分10
15秒前
zl739860884完成签到 ,获得积分10
15秒前
清脆愫完成签到 ,获得积分10
15秒前
16秒前
星空完成签到,获得积分10
16秒前
刚果王子完成签到,获得积分10
16秒前
16秒前
冰夏完成签到,获得积分10
17秒前
nyfz2002完成签到,获得积分20
18秒前
eterny完成签到,获得积分10
18秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180081
求助须知:如何正确求助?哪些是违规求助? 2830441
关于积分的说明 7977245
捐赠科研通 2492017
什么是DOI,文献DOI怎么找? 1329172
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954