An active learning Bayesian ensemble surrogate model for structural reliability analysis

替代模型 计算机科学 水准点(测量) 可靠性(半导体) 贝叶斯推理 贝叶斯概率 机器学习 航程(航空) 集成学习 人工智能 推论 数据挖掘 工程类 航空航天工程 功率(物理) 物理 量子力学 地理 大地测量学
作者
Tianli Xiao,Chanseok Park,Linhan Ouyang,Yizhong Ma
出处
期刊:Quality and Reliability Engineering International [Wiley]
卷期号:38 (7): 3579-3597 被引量:3
标识
DOI:10.1002/qre.3152
摘要

Surrogate models have been proven to be powerful tools to alleviate the computational burden of structural reliability analysis. An appropriate surrogate model can guarantee prediction accuracy with limited samples. However, the traditional single modeling technique ignores the model-form uncertainty due to insufficient knowledge of the physical system, leading to unreliable prediction results or time-consuming computation. To overcome the aforementioned deficiencies, an active learning ensemble surrogate model under the framework of Bayesian inference is proposed for structural reliability analysis. Based on the derived Bayesian posterior distribution of the predicted response, a learning function integrating the modified U function and the distance information between design points is developed to sequentially select the next point. Besides, in order to further enhance the computational efficiency, we propose an adaptive method to identify the sampling region according to the prediction uncertainty of the estimated limit state surface. Five benchmark examples are employed to verify the effectiveness and efficiency of the proposed algorithm. Comparison results show that the proposed active learning reliability analysis method based on the Bayesian ensemble surrogate model can greatly reduce the computational expense with a competitive prediction accuracy. Taking the 10-bar truss problem as an example, compared with AK-MCS+U, ALR-Bpce, and ALR-SVR, the improved rate of the proposed method in efficiency is 51.58%, 12.78%, and 25.96%, respectively. Meanwhile, its prediction accuracy is high and much better than ALR-ELSM. In addition, the superior performance is robust in a wide range of application cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YXF完成签到,获得积分10
2秒前
xiaojing完成签到,获得积分20
2秒前
11完成签到,获得积分10
2秒前
2秒前
调研昵称发布了新的文献求助10
3秒前
刘艺珍完成签到,获得积分10
3秒前
nglmy77完成签到 ,获得积分10
4秒前
淡淡de橙子完成签到,获得积分10
4秒前
LIU完成签到 ,获得积分10
4秒前
俭朴尔竹发布了新的文献求助10
4秒前
yue完成签到,获得积分10
4秒前
上官若男应助卤笋采纳,获得10
5秒前
忐忑的舞蹈完成签到 ,获得积分10
7秒前
Jasper应助cqnusq采纳,获得30
8秒前
9秒前
romantic完成签到,获得积分20
9秒前
10秒前
完美世界应助俭朴尔竹采纳,获得10
10秒前
Lucas应助Peng采纳,获得10
11秒前
11秒前
12秒前
今后应助怎么可能会凉采纳,获得10
13秒前
13秒前
13秒前
13秒前
rebeccahu应助周淡念采纳,获得10
14秒前
慕青应助重要手机采纳,获得10
14秒前
无花果应助一又二分之一采纳,获得10
14秒前
15秒前
花花给花花的求助进行了留言
17秒前
18秒前
无情听南发布了新的文献求助10
19秒前
maox1aoxin应助meta采纳,获得40
19秒前
19秒前
FIN应助Susan采纳,获得10
20秒前
20秒前
21秒前
22秒前
干焱完成签到,获得积分10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663