An active learning Bayesian ensemble surrogate model for structural reliability analysis

替代模型 计算机科学 水准点(测量) 可靠性(半导体) 贝叶斯推理 贝叶斯概率 机器学习 航程(航空) 集成学习 人工智能 推论 数据挖掘 工程类 功率(物理) 物理 大地测量学 量子力学 航空航天工程 地理
作者
Tianli Xiao,Chanseok Park,Linhan Ouyang,Yizhong Ma
出处
期刊:Quality and Reliability Engineering International [Wiley]
卷期号:38 (7): 3579-3597 被引量:3
标识
DOI:10.1002/qre.3152
摘要

Surrogate models have been proven to be powerful tools to alleviate the computational burden of structural reliability analysis. An appropriate surrogate model can guarantee prediction accuracy with limited samples. However, the traditional single modeling technique ignores the model-form uncertainty due to insufficient knowledge of the physical system, leading to unreliable prediction results or time-consuming computation. To overcome the aforementioned deficiencies, an active learning ensemble surrogate model under the framework of Bayesian inference is proposed for structural reliability analysis. Based on the derived Bayesian posterior distribution of the predicted response, a learning function integrating the modified U function and the distance information between design points is developed to sequentially select the next point. Besides, in order to further enhance the computational efficiency, we propose an adaptive method to identify the sampling region according to the prediction uncertainty of the estimated limit state surface. Five benchmark examples are employed to verify the effectiveness and efficiency of the proposed algorithm. Comparison results show that the proposed active learning reliability analysis method based on the Bayesian ensemble surrogate model can greatly reduce the computational expense with a competitive prediction accuracy. Taking the 10-bar truss problem as an example, compared with AK-MCS+U, ALR-Bpce, and ALR-SVR, the improved rate of the proposed method in efficiency is 51.58%, 12.78%, and 25.96%, respectively. Meanwhile, its prediction accuracy is high and much better than ALR-ELSM. In addition, the superior performance is robust in a wide range of application cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
清宁亦无拘完成签到 ,获得积分10
1秒前
张行发布了新的文献求助10
1秒前
852应助踏雪无痕采纳,获得10
2秒前
2秒前
2秒前
3秒前
4秒前
WO完成签到,获得积分20
4秒前
李健的小迷弟应助Dr.coco采纳,获得10
5秒前
wnx001111发布了新的文献求助10
5秒前
脑洞疼应助nqyKOj采纳,获得20
5秒前
隐形曼青应助千秋入画采纳,获得10
5秒前
稳重诗珊完成签到,获得积分10
5秒前
5秒前
星辰大海应助哈士轩采纳,获得10
5秒前
st完成签到,获得积分10
5秒前
6秒前
jianlong0206完成签到,获得积分10
6秒前
wanci应助xxx采纳,获得10
6秒前
6秒前
果冻信号发布了新的文献求助10
6秒前
hdbys发布了新的文献求助10
6秒前
我爱吃糯米团子完成签到,获得积分10
6秒前
一瓶水发布了新的文献求助10
7秒前
SYLH应助橙子采纳,获得30
7秒前
ZZDXXX发布了新的文献求助30
8秒前
8秒前
糕糕发布了新的文献求助10
8秒前
8秒前
8秒前
善学以致用应助终澈采纳,获得30
9秒前
巳明完成签到,获得积分10
9秒前
嘻嘻嘻发布了新的文献求助10
9秒前
欢呼妙菱发布了新的文献求助10
10秒前
lee完成签到,获得积分10
10秒前
10秒前
11秒前
诚心尔琴完成签到,获得积分20
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635