Statistical power of transcriptome‐wide association studies

表达数量性状基因座 单变量 全基因组关联研究 计算生物学 数量性状位点 统计能力 遗传关联 特质 生物 多元统计 遗传学 计算机科学 基因 统计 基因型 单核苷酸多态性 机器学习 数学 程序设计语言
作者
Ruoyu He,Haoran Xue,Wei Pan
出处
期刊:Genetic Epidemiology [Wiley]
卷期号:46 (8): 572-588 被引量:10
标识
DOI:10.1002/gepi.22491
摘要

Abstract Transcriptome‐Wide Association Studies (TWASs) have become increasingly popular in identifying genes (or other endophenotypes or exposures) associated with complex traits. In TWAS, one first builds a predictive model for gene expressions using an expression quantitative trait loci (eQTL) data set in stage 1, then tests the association between the predicted gene expression and a trait based on a large, independent genome‐wide association study (GWAS) data set in stage 2. However, since the sample size of the eQTL data set is usually small and the coefficient of multiple determination (i.e., ) of the model for many genes is also small, a question of interest is to what extent these factors affect the statistical power of TWAS. In addition, in contrast to a standard (univariate) TWAS (UV‐TWAS) considering only a single gene at a time, multivariate TWAS (MV‐TWAS) methods have recently emerged to account for the effects of multiple genes, or a gene's nonlinear effects, simultaneously. With the absence of the power analysis for these MV‐TWAS methods, it would be of interest to investigate whether one can gain or lose power by using the newly proposed MV‐TWAS instead of UV‐TWAS. In this paper, we first outline a general method for sample size/power calculations for two‐sample TWAS, then use real data—the Alzheimer's Disease Neuroimaging Initiative (ADNI) expression quantitative trait loci (eQTL) data and the Genotype‐Tissue Expression (GTEx) eQTL data for stage 1, the International Genomics of Alzheimer's Project Alzheimer's disease (AD) GWAS summary data and UK Biobank (UKB) individual‐level data for stage 2—to empirically address these questions. Our most important conclusions are the following. First, a sample size of a few thousands (~8000) would suffice in stage 1, where the power of TWAS would be more determined by cis ‐heritability of gene expression. Second, as in the general case of simple regression versus multiple regression, the power of MV‐TWAS may be higher or lower than that of UV‐TWAS, depending on the specific relationships among the GWAS trait and multiple genes (or linear and nonlinear terms of the same gene's expression levels), such as their correlations and effect sizes. Interestingly, several top genes with large power gains in MV‐TWAS (over that in UV‐TWAS) were known to be (and in our data more significantly) associated with AD. We also reached similar conclusions in an application to the GTEx whole blood gene expression data and UKB GWAS data of high‐density lipoprotein cholesterol. The proposed method and the conclusions are expected to be useful in planning and designing future TWAS and other related studies (e.g., Proteome‐ or Metabolome‐Wide Association Studies) when determining the sample sizes for the two stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
科研通AI5应助无悔呀采纳,获得10
2秒前
2秒前
littlewhite关注了科研通微信公众号
3秒前
3秒前
零点起步完成签到,获得积分10
3秒前
慕青应助大力的含卉采纳,获得10
3秒前
善良过客发布了新的文献求助10
4秒前
4秒前
4秒前
dildil发布了新的文献求助10
4秒前
4秒前
hu970发布了新的文献求助10
5秒前
5秒前
王思鲁发布了新的文献求助30
5秒前
七个小矮人完成签到,获得积分10
6秒前
Aria完成签到,获得积分10
6秒前
感性的安露应助结实雪卉采纳,获得20
7秒前
零点起步发布了新的文献求助10
8秒前
故意的傲玉应助Ll采纳,获得10
8秒前
斯文败类应助xiuxiu_27采纳,获得10
8秒前
胖子完成签到,获得积分10
8秒前
王巧巧完成签到,获得积分10
8秒前
tangsuyun发布了新的文献求助10
9秒前
祝顺遂发布了新的文献求助10
9秒前
Seven发布了新的文献求助10
9秒前
土拨鼠完成签到 ,获得积分10
10秒前
邢夏之发布了新的文献求助10
10秒前
漂亮芹菜完成签到,获得积分10
10秒前
ZXH完成签到,获得积分10
10秒前
Evelyn完成签到 ,获得积分10
10秒前
习习应助sb采纳,获得10
11秒前
11秒前
11秒前
斯文败类应助liu采纳,获得10
12秒前
12秒前
gy发布了新的文献求助10
12秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759