Stacked Topological Preserving Dynamic Brain Networks Representation and Classification

计算机科学 人工智能 代表(政治) 模式识别(心理学) 矩阵分解 特征(语言学) 稀疏逼近 拓扑(电路) 机器学习 数学 物理 哲学 组合数学 政治 特征向量 量子力学 法学 语言学 政治学
作者
Qi Zhu,Ruting Xu,Ran Wang,Xijia Xu,Zhiqiang Zhang,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (11): 3473-3484 被引量:8
标识
DOI:10.1109/tmi.2022.3186797
摘要

In recent years, numerous studies have adopted rs-fMRI to construct dynamic functional connectivity networks (DFCNs) and applied them to the diagnosis of brain diseases, such as epilepsy and schizophrenia. Compared with the static brain networks, the DFCNs have a natural advantage in reflecting the process of brain activity due to the time information contained in it. However, most of the current methods for constructing DFCNs fail to aggregate the brain topology structure and temporal variation of the functional architecture associated with brain regions, and often ignore the inherent multi-dimensional feature representation of DFCNs for classification. In order to address these issues, we propose a novel DFCNs construction and representation method and apply it to brain disease diagnosis. Specifically, we fuse the blood oxygen level dependent (BOLD) signal and interactions between brain regions to distinguish the brain topology within each time domain and across different time domains, by embedding block structure in the adjacency matrix. After that, a sparse tensor decomposition method with sparse local structure preserving regularization is developed to extract DFCNs features from a multi-dimensional perspective. Finally, the kernel discriminant analysis is employed to provide the decision result. We validate the proposed method on epilepsy and schizophrenia identification tasks, respectively. The experimental results show that the proposed method outperforms several state-of-the-art methods in the diagnosis of brain diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助xjc采纳,获得10
2秒前
归宁完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
寻道图强应助Momo采纳,获得30
4秒前
6秒前
7秒前
8秒前
bkagyin应助vicki采纳,获得10
8秒前
12秒前
13秒前
16秒前
科研通AI6应助东京芝士123采纳,获得10
16秒前
18秒前
19秒前
Ashore发布了新的文献求助10
19秒前
20秒前
20秒前
希望天下0贩的0应助阿梓采纳,获得30
21秒前
23秒前
vicki发布了新的文献求助10
26秒前
温暖的沛凝完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
xjc发布了新的文献求助10
28秒前
renshiq发布了新的文献求助10
29秒前
微笑的书蝶完成签到,获得积分10
29秒前
狂野的老黑完成签到 ,获得积分10
29秒前
29秒前
30秒前
二尖瓣后叶完成签到,获得积分10
33秒前
万能图书馆应助马秀玲采纳,获得10
33秒前
四夕水窖发布了新的文献求助10
35秒前
38秒前
40秒前
41秒前
43秒前
量子星尘发布了新的文献求助10
43秒前
喃喃完成签到,获得积分10
45秒前
46秒前
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421595
求助须知:如何正确求助?哪些是违规求助? 4536472
关于积分的说明 14154046
捐赠科研通 4453116
什么是DOI,文献DOI怎么找? 2442724
邀请新用户注册赠送积分活动 1434116
关于科研通互助平台的介绍 1411268