摘要
The conversion of metal–organic hybrids (e.g., metal–organic frameworks) into functional nanoporous materials has attracted intensive attention because nanoporous materials show tailorable compositions and nanoarchitectures, as well as broad potential applications in energy, environment, sensor and biomedicine. Plant polyphenols, as ubiquitous biomass, reveal low cost, nontoxicity, strong metal chelate ability and good adhesive property towards various substrates. Plant polyphenols and their coordination polymers have recently been regarded as a powerful tool for engineering functional nanomaterials. Herein, the recent progress of plant polyphenol-based coordination polymers and their derived functional mesoporous materials have been comprehensively reviewed. Firstly, based on the strong interactions between polyphenols and various assembly units (e.g., metal ions, soft-template) or substrates (e.g., polystyrene sphere), metal-polyphenol coordination polymers (MPCPs) with capsule structure, crystalline framework, colloidal spheres or mesoporous network can be prepared. Secondly, polyphenols are regarded as an excellent sustainable carbon source. When metal-polyphenol coordination polymers are used as a carbon precursor, mesoporous carbon materials including pure carbon, heteroatom doping, or metal nanoparticle loading are prepared. Thirdly, due to the tunable compositions of MPCPs, mesoporous metal oxide spheres with tunable metal species, solid or hollow structure, complex compositions (e.g., multi-metals or high-entropy metal oxides) are prepared. Fourthly, the applications of MPCPs derived mesoporous materials, including energy conversion and storage, environmental remediation and biomedicine, have been summarized. Compared with the most commonly used metal–organic frameworks, MPCPs are constructed from renewable plant polyphenols. Most importantly, polyphenols are one kind molecular glue and can interact with various molecules. Various components can be incorporated into the MPCPs. MPCPs can also be deposited on various substrates. After thermal decomposition, functional nanoporous composites and films are obtained. We believe this review will bride the polyphenol chemistry with nanoporous materials and promote the creation of more functional porous materials from polyphenols.